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Abstract: Self-compacting concrete reinforced with fiber (SCCRF) is 

extensively utilized in the construction and transportation industries due to its 

numerous advantages, such as ease of building in challenging sites, noise 

reduction, enhanced tensile strength, bending strength, and decreased 

structural cracking. Traditional methods for assessing the compressive 

strength of SCCRF are generally time-consuming and expensive, 

necessitating the development of a model to forecast compressive strength. 

This research aimed to predict the CS of SCCRF using the Extreme Gradient 

Boosting (XGB) machine learning technique. The research uses the grid 

search method to optimize the XGB model's hyperparameters. A database of 

387 samples is collected in this work, which is also an enormous dataset 

compared to those utilized in previous studies. An excellent result (R2
 max = 

0.97798 for the testing dataset) proves that the proposed XGB model has 

excellent predictive power. Finally, Shapley Additive exPlanations (SHAP) 

analysis is conducted to understand the effect of each input variable on the 

predicted CS of SCCRF. The results show that the samples' age and cement 

content are the most critical factors affecting the CS. As a result, the proposed 

XGB model is a valuable tool for helping materials engineers have the right 

orientation in the design of SCCRF components to achieve the required 

compressive strength. 

Keywords: Compressive strength (CS), Self-compacting concrete reinforced 

with fiber (SCCRF), Extreme Gradient Boosting (XGB). 

 
 
1. Introduction  

Self-compacting concrete reinforced with 

fiber (SCCRF) is a mixture of self-compacting 

cement concrete and fibers (such as carbon, steel, 

polypropylene (PP), polyester (PE), and glass) [1-

3]. These fibers are tiny, short, randomly dispersed 

throughout the concrete, and make up around 1-3 

percent of the overall volume. Depending on the 

qualities of various fibers, SCCRF possesses a 

variety of different outstanding advantages. Some 

research [4-8] implies that steel-reinforced self-

compacting concrete will increase tensile and 

flexural strength, and decrease structural 

deformation. SCCRF using polymer fibers aids in 

reducing breaking and cracking and is inexpensive 

[9]. Moreover, SCCRF also has all the advantages 

of conventional SCC, including the ability to self-

compact under its weight without needing a 

compaction mechanism, making it well-suited for 

projects with difficult construction sites. Due to the 

benefits mentioned earlier, SCCRF is a commonly 

utilized material in the construction and 
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transportation industries, particularly in challenging 

environments such as high-rise buildings, bridge 

girders, and road pavements. To efficiently employ 

SCCRF, it is vital to identify the material's 

mechanical and physical properties, in which 

compressive strength (CS) is an important 

attribute. 

Experimental methods are often utilized to 

determine the CS of concrete and SCCRF in 

particular. However, the downsides of these 

approaches are the time-consuming casting of 

samples, the need for intensive testing equipment, 

and the results depending on the skill level of 

technicians [10],[11]. Moreover, the CS of SCCRF 

may be indirectly measured by the ultrasonic pulse 

velocity index [12-14]. The link between 

compressive strength and ultrasonic pulse velocity 

is quite sensitive, making the estimation of CS 

using this approach not particularly precise. Some 

variables, including the type of fiber, the type of 

cement, the ratio of water to cement, aggregate 

content, concrete age, and fiber content, impact its 

strength [12], [15]. Therefore, it is required to study 

and build a numerical simulation tool to predict 

SCCRF's CS quickly and cost-effectively. 

In recent decades, machine learning (ML) 

approaches utilizing available experimental data to 

construct predictive models for material 

characteristics have been widely adopted [16-19]. 

However, the number of research employing ML 

models to predict the CS of SCCRF is limited [20], 

[21], with only seven studies [12],[20-25]. These 

investigations all utilize a relatively small quantity 

of data, with the most significant data set including 

189 data [24]. In addition, the vast majority of 

research employs an artificial neural network 

(ANN) approach [26-31], and Support Vector 

Machine (SVM) [25]. While Extreme Gradient 

Boosting (XGB) is a powerful model [32] that has 

been applied to solve many complex problems, no 

research uses the XGB model to predict CS of 

SCCRF use. XGB is a supervised machine 

learning algorithm with many advantages, such as 

no need to normalize the database, can handle null 

data values, high execution speed, and easily 

handle big data sets. Due to the numerous 

hyperparameters, however, the XGB model is 

challenging to adjust. Overfitting can occur if the 

hyperparameters are not chosen appropriately.   

The goal of this paper is to create a robust, 

high-precision model based on the XGB algorithm. 

A dataset of 387 samples was gathered to develop 

the XGB model. This is the biggest dataset of all 

accessible ML research on CS of SCCRF, 

according to the authors. In addition to the input 

database, the prediction performance of the XGB 

model depends on the model's selection of hyper-

parameters. This study focuses on optimizing the 

hyperparameters of the XGB model by a grid 

search to find an optimal XGB predictive model. In 

addition, the effect of input parameters on the 

SCCRF's CS is studied using Shapley Additive 

exExplanations (SHAP) values technique. 

2. The database utilized for research 

The research used a large dataset, including 

387 samples. All these data are collected from 11 

international publications. [26],[30],[31],[33-40]. 

The database includes seventeen input 

parameters (from A1 to A17) and one output (Y). The 

names of the variables and their statistical analysis 

data are described in Table 1. 

The majority of variables in the dataset have 

a wide distribution, including A1, A2, A3, A4, A5, A7, 

A8, A9, A14, A15, A16, and A17. Specifically, A1 has a 

minimum value of 220 kg/m3 and a maximum value 

of 754 kg/m3. A2 is dispersed between 0 and 

1311.9 kg/m3, and A3 is distributed between 0.83 

and 1220 kg/m3. The range of values for A4 is 

mostly between 137 and 239 (kg/m3), and the 

range for A9 is between 0 and 288.9 kg/m3. Finally, 

the output (Y) is mainly in the range of 30 to 95 

MPa. Next, Fig. 1 illustrates the analysis results of 

the correlation between inputs and outputs. The 

level of correlation may be split based on the value 

of the Pearson correlation index (rs). As observed, 

based on the values of rs, the correlation between 
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the input variables and the output is rather low. 

Only several exceptional cases are determined, 

with a few high correlations between pairs of input 

variables, such as A8 (Steel fiber) with A2 (Coarse 

aggregate) and A8 (Steel fiber) with A15 

(Superplasticizer), respectively, rs = 0.88 and 0.84. 

The interdependence between the input variables 

is low. Thus, in this study, all input variables 

contribute to the training and development of the 

machine learning model. 

Table 1. Statistical analysis of the input and output parameters 

Name Symbol Unit Mean Std Min 25% 50% 75% Max 

Cement A1 kg/m3 416.633 99.98 220 363.5 405 440 754 

Coarse aggregate A2 kg/m3 725.978 203.36 0 722 772 800 1311.9 

Fine aggregate A3 kg/m3 909.838 129.25 0.83 826 932 955 1220 

Water A4 kg/m3 172.405 22.40 137.2 158 162 191.5 239 

Fly ash A5 kg/m3 40.413 86.46 0 0 0 0 306 

Glass fiber A6 kg/m3 0.632 1.74 0 0 0 0 7.95 

Polypropylene fiber A7 kg/m3 1.413 2.79 0 0 0 1.4 12 

Steel fiber A8 kg/m3 13.594 38.29 0 0 0 0 156 

Limestone A9 kg/m3 101.406 136.31 0 0 0 288.9 288.9 

Basalt powder A10 kg/m3 0.853 10.44 0 0 0 0 165 

Marble powder A11 kg/m3 0.853 10.44 0 0 0 0 165 

Nano silica A12 kg/m3 10.473 19.28 0 0 0 16.5 90 

Nano CuO A13 kg/m3 0.571 2.41 0 0 0 0 13.8 

Metakaolin A14 kg/m3 2.791 13.30 0 0 0 0 90 

Superplasticizer A15 kg/m3 8.785 6.92 0 4.5 7 9.18 33 

Viscosity modifying 

admixture A16 l/m3 0.166 0.28 0 0 0 0.42 0.9 

Age of samples A17 day 36.566 28.83 1 28 28 28 90 

Compressive 

strength Y MPa 65.919 20.25 28.24 53.835 65.61 77.475 159.91 

Std=Standard deviation 

 
Fig. 1. Correlation matrix between variables. 
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3. Methods  

3.1. Extreme Gradient Boosting (XGB) 

The XGB algorithm was developed from the 

GBM algorithm and added by Chen, Tianqi, and 

Tong He [41]. The advantage of XGB is its ability 

to efficiently build boost trees that work in tandem 

with each other. XGB is applied to both regression 

and classification problems. The essence of this 

algorithm is to optimize the value of the objective 

function and do it based on the slope enhancement 

framework. Thanks to parallel reinforcement trees, 

XGB can solve complex problems quickly, flexibly, 

and accurately. 

3.2. Grid search for Hyperparameter 

optimization 

Machine learning models can be used in 

different fields with different data sets. The 

machine model's hyperparameters must be 

adjusted to be suitable for different problems. 

These values can influence model training, so 

tuning the hyperparameters to improve the 

prediction performance is essential. The essence 

of this process is that the important 

hyperparameters of the model are initialized and 

optimized until the suggested objective function 

reaches the minimum or maximum values [42]. 

Some commonly used hyperparameter 

optimization methods include grid search, random 

search, sequential hyperparameter optimization, 

etc. The hyperparameters of the XGB model are 

optimized in this study using the grid search 

approach. 

The predictive performance of the XGB 

model is dependent on many hyperparameters, of 

which a group of important hyperparameters is 

chosen for optimization. The value of the important 

hyperparameters is changed in a certain range 

called meshes, the remaining hyperparameters of 

the model take the default value. This approach 

exhaustively investigates all parameter 

combinations by looking for meshes in the 

multidimensional domain iteratively across the 

whole sample size. To identify which combination 

yields the highest accuracy, all combinations are 

evaluated. The evaluation, in this study, is based 

on the coefficient of determination (R2) and 

standard deviation (Std) criteria. These values are 

calculated by averaging the results of 5 cross-

validations (CV) to evaluate the trained model. 

3.3. Evaluate the model's predictive 

performance 

The predictive capability of the machine 

learning model was assessed using four statistical 

metrics (R2, MAE, RMSE, and MAPE). Where R2 is 

the coefficient of determination, RMSE stands for 

root Means square error, MAE stands for Mean 

absolute error, and MAPE stands for Mean 

absolute percentage error. The more accurate the 

model, the higher R2, the lower the MAE, RMSE, 

and MAPE, and vice versa. R2 value ranges from 0 

to 1. The model is ideal when R2 = 1. Following is 

how these four indicators are determined: 
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1
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where n infers the number of samples, qi and q,
i
  

are the actual and predicted outputs, respectively, 

and q  is the average value of the qi 

3.4. Shapley Additive exExplanations 

SHAP is a frequently employed approach in 

the field of machine learning for interpreting the 

model's predictions and determining the effect of 

input parameters on output parameters. Shapley 

created Shap value from a game theory 

perspective [43]. Where the dataset's feature 

values act as coalition members. This technique 

predicts how each attribute contributes to the 

projected value and explains the forecast. SHAP 
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values are the numerical values allocated to each 

player in every possible player combination. It 

assigns a value to each predictor for the regression 

issue based on all potential predictive models. This 

technique enables the SHAP value to produce a 

prediction result that is more similar to the real 

model. It should be noted that SHAP analysis is 

only one of the approaches to understanding the 

impact of input features on a model's output. It is a 

model-agnostic method with a solid theoretical 

foundation that provides local and global 

explanations. 

4. Methodology flowchart  

The best XGB model for predicting CS of 

SCCRF is developed by the following four steps:  

(1) Data collection, (2) Training model and 

optimizing the model's hyperparameters, (3) 

Testing model, (4) Evaluating the effect of input 

parameters. The detailed step-by-step is as 

follows: 

Step 1: Data collection 

The database includes 387 experimental 

results, collected from 11 documents. The 

database is randomly divided into two sets: the 

training dataset for model training (accounting for 

70%) and the test dataset for model testing 

(accounting for 30%). 

The dataset consists of 387 samples divided 

into 2 sets. The training dataset has 271 samples 

and the test dataset has 116 samples. The random 

separation of the dataset into two distinct parts 

enables the most objective and precise evaluation 

of the prediction ability of the machine learning 

model because the testing dataset is completely 

unknown to the ML model during the training part. 

In addition, all data values are standardized to a 

range of 0 to 1 during model construction to reduce 

simulation-generated errors. 

Step 2: Training model 

In this step, the XGB algorithm is trained 

using the training dataset. Using grid search, the 

hyperparameters of the XGB model are tuned. 

After refining the parameters, the predictive 

performance of the models is assessed and 

compared in order to select the XGB model with 

the most significant predictive performance. In 

order to avoid overfitting and enhance the 

prediction ability of the machine learning model, 

the 5-fold cross-validation approach is 

implemented during model construction. This step 

is repeated until the models are successfully 

trained (the tolerance criterion is met). 

Step 3: Testing model 

After step 2, the aforementioned optimal 

XGB models are evaluated with the test dataset. 

Four statistical metrics were used to evaluate the 

prediction accuracy of the model. The significance 

of these statistics is presented in section 3.3. 

Based on the acquired evaluation index values, the 

XGB_1 model is chosen as the best model. In the 

following stage, this model is used to predict the 

CS of SCCRF and analyze the effect of input 

parameters on CS. 

Step 4: Evaluating the effect of input 

parameters 

The recommended XGB model is used in the 

last step to assess the impact of input parameters 

on the CS of SCCRF using the Shap value method. 

The detailed methodological chat of the study is 

presented in Fig. 2. 

 
Fig. 2. Methodology flowchart 
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5. Results of research 

The predictive ability of a machine learning 

model depends on various elements, two of which 

are the selection of a suitable algorithm and the 

construction of an exemplary model architecture. 

The XGB algorithm is chosen for investigation. The 

model's hyperparameters are optimized using the 

grid search technique to find an efficient XGB 

model structure for SCCRF's CS prediction. The 

grid search method compares all the XGB model 

structures generated by parameter combinations. 

Next, the predictability of the five best XGB models 

is compared using the four criteria for 3 sets 

(training dataset, validation dataset, and testing 

dataset). The XGB model with the most optimum 

hyperparameters and the highest predictive 

performance is chosen to forecast the CS of 

SCCRF and the impact of the input parameters. 

5.1. Grid search for optimizing the parameters 

of XGB model  

This section describes the procedure for 

optimizing the hyperparameters of the XGB model. 

The predictive performance of the XGB model is 

contingent upon many parameters, some of which 

are significant hyperparameters, such as 

'max_depth', 'n_estimators', 'learing_rate', 

'min_child_weight', and 'subsample'. Where 

'max_depth' is the maximum depth of the individual 

regression estimators. 'n_estimators' is the number 

of boosting stages to perform. 'learing_rate' shrinks 

the contribution of each tree. 'min_child_weight' is 

the minimum number of samples required to split 

an internal node and 'subsample' is the fraction of 

samples to be used for fitting the individual base 

learners. Important hyperparameters are 

parameters whose value modifications 

substantially impact the predictive performance of 

the model. Hyperparameters are optimized by 

selecting meshes to survey for important 

parameters. The grid values chosen for the survey 

are shown in Table 2. 

Table 2. The selected hyperparameters of XGB 

model and studied values 

Hyperparameters Grid values 

max_depth (3, 4, 5, 6, 7) 

n_estimators (100, 200, 400, 600,800,1000, 

1400, 1600) 

learing_rate (0.1, 0.3, 0.4) 

min_child_weight (1, 3, 5) 

subsample (0.1, 0.5, 1) 

The remaining parameters that have little 

effect on model performance are given default 

values. The survey findings acquired the R2, 

standard deviation of all XGB models for loops, in 

decreasing order, such as 0.96341282, 

0.96341282, 0.96341282,..., 0.70417289, 

0.70417289, 0.70417289 (with a total of 1080 

models). The results also show that the above 

values correspond to 1048, 328, 688,... 48, 408, 

and 768 runs. Specifically, R2 = 0.96341282 

corresponds to the 1048th simulation, and R2 = 

0.70417289 corresponds to the 768th simulation. 

Simultaneously, the output is an Excel file including 

all models corresponding to 1080 simulations, all 

parameters related to those models, the 

mean_test_scores (R2) and std_test_score, rank 

test score... for all 1080 models. Table 2 displays 

only the five models with the highest rank test 

score. 

Table 3. The results of using Grid search method for optimizing the parameters of the XGB model 

Index learing_rate max_depth 
min_child_

weight 
n_estimators subsample 

Mean_ 

test_score 

Std_test_sc

ore 

Rank_ 

test_score 

 

Model 

112 0.1 4 3 1000 0.5 0.96331 0.01501 4 XGB_4 

328 0.1 7 3 1000 0.5 0.96341 0.01477 1 XGB_1 

472 0.3 4 3 1000 0.5 0.96331 0.01501 4 XGB_5 

688 0.3 7 3 1000 0.5 0.96341 0.01477 1 XGB_2 

1048 0.4 7 3 1000 0.5 0.96341 0.01477 1 XGB_3 
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The results show that, based on R2 and std 

of the validation data set, it is possible to identify 5 

XGB models with the best predictive power, 

namely XGB_1, XGB_2, XGB_3, XGB_4, XGB_5 

with corresponding hyperparameters (Table 3). In 

order to select an optimal XGB model, the 

forecasting performance of these five models will 

be compared using four metrics: MAE, RMSE, R2, 

and MAE during the training, validation, and testing 

stages.  

5.2. Comparison of predictive ability of XGB 

models  

In the preceding section, the evaluation of the 

predictive performance of the new XGB models is 

based solely on the validation dataset's R2 value. 

Consequently, the five models with the highest 

predictability are chosen, namely XGB_1, XGB_2, 

XGB_3, XGB_4, and XGB_5. Next, the forecast 

performance of these five models is compared 

using all four metrics over the training, validation, 

and testing stages. 

Fig. 3 demonstrates that the predictive 

performance of all five models is excellent and 

nearly identical, as evidenced by the modest errors 

of MAE, RMSE, and MAPE and the high R2 (R2
testing 

> 0.976). All five models are optimized for 

hyperparameters and chosen as the ideal models 

in the preceding phase, which explains why the 

findings are excellent. However, three models, 

namely XGB_1, XGB_2, and XGB_3, are more 

accurate than the two models XGB_4 and XGB_5 

(see Table 4). In all three stages of training, 

validation, and testing, models XGB_1, XGB_2, 

and XGB_3 have smaller RMSE, MAE, MAPE 

values, and higher R2 than the other 2 models. 

Therefore, it is possible to choose 1 out of 3 

models, XGB_1, XGB_2, and XGB_3, which is the 

most optimal for predicting the CS of SCCRF. 

Here, the proposed XGB_1 model is SCCRF's CS 

predictive model with outstanding predictive results 

(RMSEtesting = 3.22784 MPa, MAEtesting = 2.19278 

MPa, R2
testing = 0.97798 and MAPE testing = 0.03486). 

In the following part, detailed predicted results from 

model XGB_1 are presented. 

 

  

  

Fig. 3. Compare the predictive ability of 5 models that have been optimized for parameters: XGB_1, 

XGB_2, XGB_3, XGB_4, and XGB_5 
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Table 4. The prediction results of five XGB models 

  Metrics XGB_1 XGB_2 XGB_3 XGB_4 XGB_5 

Validation 

RMSE 3.58562 3.58562 3.58562 3.57254 3.57254 

MAE 2.10675 2.10675 2.10675 2.13313 2.13313 

R2 0.96341 0.96341 0.96341 0.96331 0.96331 

MAPE 0.03287 0.03287 0.03287 0.03394 0.03394 

Training 

RMSE 0.29037 0.29037 0.29037 0.54700 0.54700 

MAE 0.16544 0.16544 0.16544 0.40509 0.40509 

R2 0.99978 0.99978 0.99978 0.99922 0.99922 

MAPE 0.00243 0.00243 0.00243 0.00642 0.00642 

Testing 

RMSE 3.22784 3.22784 3.22784 3.23459 3.23459 

MAE 2.19278 2.19278 2.19278 2.19447 2.19447 

R2 0.97798 0.97798 0.97798 0.97616 0.97616 

MAPE 0.03486 0.03486 0.03486 0.03545 0.03545 
 

5.3. Representative results 

In this part, to evaluate the effect of 

optimizing hyperparameters of the XGB model, the 

prediction results of two models, XGB_1 (the best 

model) and XGB_0 (model with default 

parameters), are compared using the regression 

chart (Fig 4). The results demonstrate that the 

predictive power of the two models at the training 

stage is roughly equivalent (Figs 4a, c), with 

models XGB_0 and XGB_1 expressing R2
training = 

0.99999 and R2
training = 0.99978, respectively. The 

prediction abilities of the two models are different 

during the test stage, though. The XGB_1 model 

has more predictive ability than the XGB_0 model, 

as seen by its R2
testing = 0.97798, which is higher 

than that of the XGB_ 0 model (R2
testing =0.95383). 

Moreover, for the test data set of model XGB_1, 

the errors RMSE, MAE, and MAPE are all lower 

than those of model XGB_0 for the testing dataset. 

Thus, once again, it can be confirmed that 

optimizing the parameters of the XGB model by the 

grid search method is effective and that XGB_1 is 

the model with the best predictive ability. 

It can be seen that model XGB_1's training 

ability is nearly ideal, with R2
training = 0.99978. At the 

testing stage (Fig. 4b), the majority of samples 

exhibit extremely close predicted results to the 

regression line (test R2 = 0.97798), demonstrating 

the XGB_1 model's excellent predictive ability. 

Fig. 5 illustrates the error between the actual 

and expected CS values based on the ratio of 

targets to outputs (targets/outputs). The closer this 

ratio is to 1, the more precise the XGB_1 predictive 

model is, and vice versa. At the training stage (Fig. 

5a), the majority of samples have a target/outputs 

ratio of 1, indicating that the predicted outcomes 

closely match the actual results. The majority of 

samples at the test stage (Fig. 5b) have a 

target/outputs ratio of 1. Nonetheless, there are a 

few instances with targets/outputs ratios different 

than 1, but only between 0.85 and 1.15. This error 

is entirely acceptable. In addition, the number of 

erroneous samples is negligible compared to the 

total of 116 samples in the test data set. It is 

important to note that although the training 

performance is excellent, the testing performance, 

as indicated by the R2 value, is also high at 

0.97798. Along with lower RMSE, MAE and MAPE 

values, this high R2 value suggests that the model 

is generalizing well to the test dataset and is not 

merely memorizing the training data. In conclusion, 

the high R2 and low RMSE, MAE and MAPE values 

on the testing dataset indicate that the model is 

likely generalizing well and not overfitting to the 

training data. Therefore, the optimal model 
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XGB_1's prediction findings are credible. 

In addition, the difference between the actual 

compressive strength and the strength predicted 

by the XGB_1 model for each sample is depicted 

in Fig. 6 for the training set (Fig. 6a) and the testing 

set (Fig. 6b). The graph's vertical axis shows the 

sample count, while the graph's horizontal axis 

shows the error value. The smaller the error 

number, the closer the predicted CS value is to the 

actual CS value, or the greater the predictive 

accuracy of the XGB_1 model. Most samples 

exhibit minimal errors, specifically [-0.5  0.5] MPa 

for the training set (Fig. 6a) and [-5  5] MPa for the 

testing set (Fig. 6b). Therefore, the proposed 

XGB_1 model is an excellent predictor for CS of 

SCCRF. 
 

  

  
Fig. 4. Regression plots for the representative results of the XGB_1 (best model) and XGB_0 (default 

XGB model) for: (a,c) training dataset, (b,d) testing dataset 

 
Fig. 5. Comparison between targets and outputs of the XGB_1 model 
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Fig. 6. Comparison between predicted and experimental compressive strength of the representative 

results for the XGB_1 model 

5.4. Result of SHAP analysis 

This section evaluates and simulates the 

importance and impact of input factors on 

compressive strength using the SHAP value (Fig. 

7). The names of the input parameters are 

represented on the vertical axis, and the effect 

level decreases from top to bottom. The input 

variables' Shap values are shown on the horizontal 

axis; the higher and more positive the Shap value, 

the more an input parameter will impact an output 

parameter. Conversely, the more negatively that 

parameter affects the output parameter, the 

smaller the Shap value. As the color changes from 

yellow to black, it shows that the input parameters 

positively impact CS. 

As observed in Fig. 7, the Age of samples 

has the greatest impact on CS. Cement, Nano 

silica, Water, Fine Aggregate, Metakaolin, Coarse 

Aggregate, Steel Fiber, and Superplasticizer are 

the next input factors that have an impact on CS, 

listed in descending order. The remaining 8 

variables have little effect on CS. In addition, the 

findings of Shap value analysis also show that the 

input parameters positively impact CS, including 

the Age of samples, Cement, Nano silica, and Steel 

fiber. In other words, the CS increases as the age 

of sample, cement content, nano silica content, 

and steel fiber content increase, and vice versa. 

This finding is completely consistent with the 

experimental results found in the study [44]. On the 

contrary, the input parameters negatively influence 

the CS of SCCRF, such as Water, Fine aggregate. 

That is, when the content of Water, Fine aggregate 

increases, the CS of SCCRF will decrease. Several 

studies [45], [46] have reached similar conclusions. 

Moreover, the Shap values plot shows that the 

remaining input parameters have a complex impact 

on the SCCRF's CS.

 
Fig. 7. Shap values analysis of the input variables 
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6. Conclusions and discussion 

Machine learning models, of which XGB is a 

potent model, have been widely used in the fields 

of transportation and construction in recent 

decades, particularly in predicting the mechanical 

properties of concrete. This study's goal is to create 

the best XGB model with the right hyperparameters 

for predicting the CS of SCCRF. Research results 

indicate: 

- According to the author's understanding, 

with 387 gathered samples, this is the biggest data 

set compared to other research that uses machine 

learning models to predict SCCRF's CS 

- The prediction results of five models 

XGB_1, XGB_2, XGB_3, XGB_4, and XGB_5, are 

highly accurate and almost identical, as evidenced 

by small MAE, RMSE, and MAPE errors and a high 

R2 (R2
testing > 0.976), indicating that the optimization 

of hyperparameters of the XGB model by grid 

search is highly effective. 

- As evidenced by the RMSEtesting=3.22784 

MPa, MAEtesting =2.19278 MPa, R2
testing= 0.97798 

và MAPEtesting=0.03486, the XGB_1 model can 

accurately estimate the CS of SCCRF from its 

actual data. Therefore, XGB_1 is proposed as 

SCCRF's CS predictive model quickly, with high 

reliability, saving cost and time. 

- Age of samples had the highest impact on 

SCCRF compressive strength estimation, followed 

by Cement, Nano silica, Water, Fine aggregate, 

Metakaolin, Coarse aggregate, Steel fiber, and 

Superplasticizer, and the remaining 8 variables 

have little influence on the compressive strength, 

as depicted by SHAP analysis. 

- The SHAP plot showed that Age, Cement, 

Nano silica, and Steel fiber positively influence 

SCCRF compressive strength. Water, Fine 

aggregate negatively influence the CS of SCCRF. 

The remaining parameters have a complex 

influence. 

This work also exhibits several limitations 

that need to be discussed for further studies. First, 

grid search may not be the most efficient method 

when dealing with a large grid limit, especially for 

models like XGB with important hyperparameters 

such as n_estimators and learning_rate that can 

vary in a wide range with fine steps. Instead of 

using grid search, more efficient optimization 

algorithms can be employed for hyperparameter 

tuning in future research, such as: (i) Random 

search: Rather than exhaustively searching the 

entire parameter space, random search samples a 

random subset of hyperparameter combinations, 

leading to a faster and more efficient search 

process, (ii) Discrete optimization algorithms: 

Genetic algorithms (GA) and particle swarm 

optimization (PSO) are examples of metaheuristic 

optimization techniques that can efficiently explore 

the search space, making them suitable 

alternatives for hyperparameter tuning when 

dealing with large grid limits. Second, 5-fold cross-

validation is considered sufficient for this study 

because of its many benefits, such as reduced 

computational cost, adequate model evaluation, 

widely used. However, the use of 10-fold cross-

validation should be considered in future studies to 

further confirm the objectivity of the optimal results 

of the grid search method and ensure a more 

comprehensive evaluation of the model. 
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data required to reproduce these findings cannot 

be shared at this time as the data also forms part 

of an ongoing study. 
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