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Abstract: Rubberized concrete is a material that is both ecologically friendly 

and sustainable, and it has been finding more and more usage in building 

applications recently. In this study, a machine learning model, namely 

LightGBM, is developed to predict rubberized concrete's compressive strength 

(CS) using 11 input parameters. The model's performance is measured using 

several different statistical criteria after being trained on a dataset containing 

275 samples. In order to evaluate the impact that each input parameter has on 

the CS, feature importance and partial dependency plots (PDP) are used as 

analytical tools. According to the findings, the superplasticizer, chipped rubber, 

crumb rubber, coarse aggregate, fine aggregate, and water content all have a 

significant impact on the CS of rubberized concrete. On the other hand, the 

results indicate that the cement content, slag/fly ash content, and type of CS 

have a relatively minor effect. In addition to this, the PDP offers insights into 

the manner in which the input parameters affect the CS of rubberized concrete. 

Overall, the developed model and analytic techniques may be helpful in 

forecasting the CS of rubberized concrete and improving its mix design for 

various construction applications. 
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1. Introduction  

Waste rubber tires are a mounting 

environmental concern that demands attention [1]. 

Made of synthetic rubber, a petroleum-based 

material that refuses to decompose, these tires 

pose a long-lasting threat to the environment [2]. 

Fortunately, the construction industry can play a 

vital role in reducing the impact by harnessing the 

power of recycled rubber in building materials like 

concrete and asphalt [3,4]. This not only lowers the 

number of raw materials required, but also 

minimizes the quantity of waste tires deposited into 

the surrounding environment. Rubberized 

concrete, a green alternative made by blending 

ground rubber tires into the concrete mixture, 

boasts remarkable properties, including enhanced 

shock absorption, sound-deadening, resistance to 

wear and abrasion, and lower thermal conductivity, 

leading to improved energy efficiency in 

infrastructure [5,6].  

Despite its promise, the comprehensive 

understanding of rubberized concrete's properties 

and performance remains limited. Further research 

and experimentation are necessary to unlock its full 
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potential for use in construction. Compressive 

strength, denoted CS, is a measure of a material's 

capacity to withstand given stresses and persist 

without failure. This critical property, which 

determines a concrete's structural performance 

and resistance to cracking and deformation, must 

be evaluated to assess rubberized concrete's 

suitability for construction. The CS of rubberized 

concrete is influenced by several elements, 

including the kind of rubber particles used, their 

size, the quantity of rubber in the mixture, the 

length of time it is allowed to cure, and the other 

components that are included in the mixture. 

Traditional approaches to determining the 

CS of rubberized concrete include performing 

compression tests on cylindrical or cubic 

specimens, and following standardized procedures 

for preparing and testing the specimens. In an 

effort to reduce the use of sand in concrete 

production, Pelisser et al. examine the feasibility of 

using used tire rubber as a substitute for sand 

aggregate [7], with a reduction of 14% (28 days) in 

CS compared to conventional concrete and a CS 

of 48 MPa for the mixture with the highest 

resistance, and improved mechanical properties 

due to alkaline activation and silica fume addition. 

Turatsinze et al. [8] showed that rubber aggregates 

in cement composites offered a more effective 

strategy for reducing fragility and avoiding 

shrinkage cracking, with a 20-30% replacement of 

natural sand aggregates. The advantages of fiber 

reinforcing and rubber integration may be realized 

concurrently due to the substantial reduction in the 

modulus of elasticity and substantial rise in the 

pseudo-strain corresponding to the peak load of 

the cement composites. Besides, Khaloo et al. [9] 

looked at the possibility of using tire rubber 

particles to substitute mineral aggregates in 

concrete, and found that although this did diminish 

the strength and modulus of elasticity, it also 

considerably decreased the brittle behavior, 

fracture width, and crack propagation velocity. Self-

Compacting Concrete (SCC) with rubber 

aggregates as a partial replacement for natural 

aggregates was studied by Turatsinze and Garros 

[10], who found that the composite's modulus of 

elasticity was reduced while its strain capacity was 

increased, highlighting the composite's potential 

application in situations requiring high resistance to 

cracking due to imposed deformation. Rubcrete 

blends have fascinating features that may be 

beneficial in both structural applications and 

environmental remediation, as researched by 

Sgobba et al. [11], thanks to an acceptable CS. 

Overall, rubberized concrete made by combining 

recycled rubber and concrete aggregates was 

found to have lower strength than conventional 

concrete, rendering it unsuitable, particularly for 

structural applications. Rubberized concrete has 

been found to be more suitable for paving 

applications, as the required strength in such 

applications falls in a lower range [12,13]. When 

rubber particles are used as a partial substitute for 

traditional aggregates, the CS of the resulting 

rubberized concrete deteriorates in inverse 

proportion to the rubber percentage [14–17]. It has 

been discovered that the CS of rubberized 

concrete is drastically altered by incorporating 

rubber particles in concrete. As rubber content 

rises, CS of the rubberized concrete lowers. The 

reason is that rubber particles are less dense than 

typical aggregates [18], resulting in a less 

compacted and weaker concrete structure. The 

extent of the reduction in CS varies depending on 

the type and content of the rubber particles used.  

Although the CS of rubberized concrete is 

often studied via experimental techniques, these 

approaches have drawbacks, such as high cost, 

lengthy testing, and variable findings influenced by 

several variables, such as the type of rubber used, 

mixing procedure, and curing time. Therefore, a 

reliable and accurate method using the constituent 

materials' properties and mixture proportions to 

predict rubberized concrete's CS is necessary. 

This could help reduce the time and cost involved 

in testing and provide an effective way of assessing 

rubberized concrete's CS for practical applications. 

Recently, there has been a growing interest 
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in using machine learning (ML) techniques in civil 

engineering. These approaches have been 

successfully applied in a wide range of 

applications, including structural engineering [19], 

geotechnical engineering [20–24], material 

sciences [25,26]. Due to its capacity to evaluate 

massive quantities of complex data and generate 

accurate predictions that lead to better design and 

decision-making, ML has shown to be a beneficial 

tool for civil engineering applications. Light gradient 

boosting algorithm (LightGBM), a recently 

developed robust ML model, can be highly 

advantageous when solving complex problems. 

With its ability to handle large datasets and 

optimize complex engineering processes, it is well-

suited to prediction tasks. However, it is important 

to note that LightGBM has not been used 

specifically to predict the CS of rubberized 

concrete.  

Therefore, the primary purpose of this 

research is to create an ML model to reliably 

forecast the CS of rubberized concrete, which can 

potentially contribute to the development of 

sustainable and environmentally friendly 

construction materials. The use of ML techniques 

can effectively address the limitations of 

experimental approaches and provide a fast and 

cost-effective means of predicting concrete 

strength. A comprehensive dataset is compiled 

from a review of previous studies and experimental 

results to achieve this goal. The dataset, covering 

275 samples, is then pre-processed to remove 

outliers and ensure data quality. This study 

represents a contribution to the field of concrete 

materials science by adding a number of new 

samples to the dataset, compared with [26], and 

testing the feasibility of using LightGBM for 

predicting the CS of rubberized concrete. This 

algorithm is evaluated and finely tuned to select the 

best-performing model. The model is trained on the 

pre-processed data and validated using a range of 

metrics to ensure its accuracy and reliability. The 

developed model provides a reliable method for 

estimating rubberized concrete's CS, thus enabling 

the development of new construction materials that 

are more sustainable and cost-effective. 

2. Database collection 

The compiled database consists of a total of 

275 samples, which are sourced from 19 papers in 

the relevant literature, including Guneyisi et al. [18], 

Geosglu and Guneyisi [27], Batayneh et al. [2], 

Zheng et al. [28], Ganjian et al. [29], Ozbay et al. 

[30], Paine et al. [31], Ghedan and Hamza  [32], 

Bala et al. [33], Fiore et al. [34], Geosglu et al. [35], 

Kumar et al. [36], Mohammed and Azmi [37], 

Almaleeh et al. [38], Bharathi et al. [39], Abusharar 

[40], Ishwariya [41], Liu et al. [42], and Asutkar et 

al. [43]. The input space comprises 11 inputs, and 

one output is represented by the CS (FC) feature. 

Table 1 provides an easy-to-refer-to summary of 

the database's information. The specimen type 

variable is an important additional variable 

considered in this study, used to indicate the size 

of the concrete samples being tested for CS. This 

variable ranges from 0 to 1, where a value of 0 

represents cubic concrete samples with 

dimensions of 1003 mm, and 1 represents cubic 

concrete samples with dimensions of 1503 mm.  

For each input variable, a histogram showing 

the range of values is shown, along with its 

cumulative distribution, is illustrated in Fig. 1. The 

histogram facilitates the observation of the 

concentration of values and any outliers present in 

the data. The cumulative distribution, on the other 

hand, allows for the analysis of the distribution's 

shape and skewness, which is crucial in statistical 

analysis.  

The correlation analysis of all the features 

present in the data space is depicted in Fig.2. The 

visual representation provides insights into the 

relationship between the inputs and the output and 

helps identify the significant factors affecting the 

output. Correlation analysis is a commonly used 

tool for exploratory data analysis and feature 

selection in data science and ML. It is observed 

that the highest correlation concerning CS is 

exhibited by variable SP, with a correlation 
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coefficient (R) of 0.56, followed by SF, with a 

coefficient of 0.39, and fine aggregate, with a 

coefficient of 0.38. The correlation between input 

variables is demonstrated to be highest between 

crumb rubber and chipped rubber, with a 

correlation of R=0.73, followed by the correlation 

between SF and SP, which has a correlation of 

R=0.63. According to the definition provided by 

Tabachnick et al. [44], pairs of parameters 

exhibiting strong correlations are characterized by 

an absolute value of R greater than 0.75. The 

correlation analysis performed in this study 

indicates that the input space exhibits suitable 

characteristics for creating ML model. 
 

Table 1. Statistical characteristics of the input and output parameters in the database. 

Parameter Unit Mean Std Min Q25 Q50 Q75 Max 

Inputs 

Cement (Cement) kg/m3 391.0 72.3 268.0 347.4 383.0 430.0 629.3 

Silica Fume  

(SF) 
kg/m3 12.1 23.5 0.0 0.0 0.0 17.5 90.0 

Blast Furnace Slag (BFS) kg/m3 3.9 24.0 0.0 0.0 0.0 0.0 180.0 

Fly Ash  

(FA) 
kg/m3 4.2 18.9 0.0 0.0 0.0 0.0 115.0 

Superplasticizer (SP) kg/m3 3.2 4.8 0.0 0.0 0.0 5.3 13.5 

Water 

(W) 
kg/m3 192.4 32.9 121.5 180.0 180.0 210.0 258.0 

Fine aggregate 

(Fine) 
kg/m3 609.0 209.0 0.0 544.1 645.5 692.5 1635.5 

Coarse aggregate 

(Coarse) 
kg/m3 931.9 260.4 0.0 792.0 975.0 1069.2 1594.0 

Crumb rubber 

(Crumb) 
kg/m3 53.2 99.8 0.0 2.7 24.3 54.5 754.0 

Chipped rubber 

(Chipped) 
kg/m3 55.6 146.6 0.0 0.0 0.0 30.5 1138.0 

Specimen type 

(Type) 
- 0.7 0.5 0.0 0.0 1.0 1.0 1.0 

Output 

Compressive strength (FC) MPa 30.2 19.6 0.6 15.9 28.0 42.8 85.7 

Std=Standard deviation; 
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Fig. 1. Histograms of all the variables used in the data space 

 

Fig. 2. Correlation of each input parameter and output parameter of the database 

The division of the dataset into two sub-

datasets has been carried out randomly, with the 

first part, which comprises 70% of the data, 

designated as the training part, and the second 

part, which consists of the remaining 30% of data, 

designated as the testing part. The selection of this 

split ratio, with the larger portion being assigned to 

the training part, has been made following 

suggestions found in the relevant literature [45], to 

ensure efficiency during both the training and 

testing phases. 

3. Method 

3.1. Light gradient boosting 

LightGBM is an effective gradient-boosting 

(GB) framework that utilizes gradient-based 

learning algorithms to address the challenges of 

large-scale datasets [46]. It may be used for 

regression and classification issues. The "light" in 

LightGBM refers to its efficient implementation, 

which reduces the computational time required for 

training and inference compared to traditional GB 

algorithms. 

 The innovative method used by LightGBM is 

known as gradient-based one-side sampling 

(GOSS), which focuses on building models with 

more significant data instances and reducing the 

impact of noisy and irrelevant data. LightGBM uses 

a histogram-based algorithm to discretize 

continuous features, which helps to reduce the 

computational cost and increase the training 

efficiency. LightGBM also introduces a leaf-wise 

tree growth strategy that grows the tree from the 
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bottom to the top, selecting the best split based on 

the maximum reduction of the loss function. Unlike 

traditional depth-wise tree growth strategies that 

grow the tree in a level-by-level manner, leaf-wise 

tree growth leads to a more compact tree structure 

and can handle sparse and imbalanced data more 

effectively. Additionally, LightGBM employs a 

cache-conscious algorithm to reduce memory 

usage, and it supports parallel and GPU-based 

learning, making it more scalable and efficient than 

traditional GB methods. In summary, LightGBM's 

unique combination of one-sided sampling, leaf-

wise tree growth, and cache-conscious learning 

makes it a highly efficient gradient-boosting 

framework for large-scale datasets. 

3.2. Performance indices of models 

The RMSE, MAE, R2, and MAPE are the 

performance metrics used in this study to assess 

the effectiveness and precision of the LightGBM 

model in predicting the FC of rubberized concrete. 

The following formula is used to determine these 

performance indicators: 

( )
N 2
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 −
= −

 −
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where Ytt,i is the value of ith test sample, ttY  is 

the average of these values, Ydb,i is predicted value 

of ith sample, calculated by ML model, and N 

denotes the total numbers. The RMSE, MAE, and 

MAPE performance measures all achieve their 

ideal value when equal to 0, however the value of 

R2 reaches its optimal value when it is equal to 1.  

4. Results and Discussion 

4.1. Hyperparameter tuning of the LightGBM 

model 

Hyperparameter tuning is an important 

aspect of ML that involves adjusting the 

parameters of the learning algorithm to optimize its 

performance on a specific task. The choice of 

hyperparameters significantly impacts the model's 

performance, and their optimization is critical to 

achieving the best results. The objective of 

hyperparameter tuning is to find the best 

combination of hyperparameters that leads to the 

optimal ML model performance. The process of 

hyperparameter tuning involves evaluating a range 

of hyperparameter values to find the combination 

that gives the best performance on a validation set. 

The optimization process can be time-consuming 

and requires a lot of computational resources, but 

ensuring that the model has the best possible 

performance is essential. 

The tuning of the hyperparameters of the 

LightGBM model is performed through an 

extensive trial and error process. The selection of 

the hyperparameters to be tuned is based on their 

significant impact on the LightGBM algorithm. The 

four hyperparameters that are chosen for tuning 

are n estimators, max depth, learning rate, and min 

child samples. The search domains for the 

hyperparameters associated with the LightGBM 

model are presented in Table 2. The default values 

for the remaining hyperparameters in the 

LightGBM package utilized in Python are utilized. 

The utilization of a 5-fold cross-validation 

(CV) methodology is employed to prevent 

overfitting and increase the reliability of the training 

operations. The training dataset is randomly 

divided into five equal folds, with each fold selected 

four times to serve as the training component, while 

the remaining fold was used as the validation 

component. The performance metrics are 

calculated by taking the mean of the results 

obtained after five training and validation iterations 

have been conducted. The validation dataset 

created by the 5-fold CV method tests and 

compares the model's performance throughout the 

training phase. The hyperparameter tuning 
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process is assessed using RMSE and R2 criteria. 

The optimal hyperparameters for the LightGBM 

model are selected when the lowest RMSE and the 

highest R2 are exhibited. 

The optimal values of the hyperparameters 

are identified by evaluating the validation scores, 

as indicated in the results. Specifically, the 

combination of  = 0.5 and M.D. = 0.2 results in the 

best validation scores, with an R2 value of 0.926. 

Furthermore, this combination also yields the 

lowest value of RMSE, which is 5.253 MPa. These 

findings suggest that tuning the hyperparameters 

using the trial and error approach has enabled the 

LightGBM model to achieve improved performance 

and greater accuracy in predicting the FC. The 

results above are obtained with a min child sample 

value of 7 and a number of estimators set to 500. 

These hyperparameters reflect the minimum 

number of samples required in a decision tree leaf, 

and the number of decision trees created by the 

LightGBM model, respectively. High validation 

scores are also observed for other combinations, 

including  = 0.1 and M.D. = 0.2 with an R2 of 

0.925,  = 0.1 and M.D. = 0.3 with an R2 of 0.924, 

and  = 0.1 and M.D. = 0.4 with an R2 of 0.923. 

Based on the presented results, it appears that the 

LightGBM model's hyperparameters significantly 

impact the model's performance. It is clear that the 

combination of  = 0.5 and M.D. = 0.2 yields the 

best performance, as it gives the highest validation 

R2 score and the lowest value of RMSE. However, 

other combinations also result in high validation 

scores, with R2 values ranging from 0.925 to 0.923, 

indicating that these hyperparameter combinations 

are also feasible. 

It is noted that the results are based on the 

specific dataset and problem being investigated. 

The optimal hyperparameters for the LightGBM 

model may vary depending on the specific 

characteristics of the dataset and problem, the 

feature number, and relationship between inputs 

and the target. 

Table 2. Search domain of 4 hyperparameters tuned in LightGBM model 

Hyperparameter Notation Studied range of value 

n_estimators (Ne) estimator 500, 1000, 1500, 2000, 2500, 3000 

learning_rate  0.1, 0.3, 0.5, 0.7 

max_depth M.D. 2, 3, 4 

min_child_samples Min child samples 2, 3, 4, 5, 6, 7 
 

   

   



JSTT 2023, 3 (1), 26-43                                                                                  Ly et al 

 

 
34 

   

   
Fig. 3. R2 validation scores of LightGBM model 
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Fig. 4. RMSE validation scores of LightGBM model 

4.2. Prediction results 

In this section, the finely-tuned LightGBM 

model's prediction results are presented. The 

regression analysis of the training, testing, and all 

data is displayed in Fig. 5. In each case, the two 

error lines with a deviation of 10% and 20% of the 

diagonal are shown, providing valuable information 

regarding the accuracy and precision of the 

model's predictions. The success of the training 

phase can be observed from the location of all the 

data points near the diagonal in Fig. 5. This 

indicates that the LightGBM model has accurately 

predicted the FC values and are highly consistent 

with the experimental FC values. This is a strong 

indication of the reliability and effectiveness of the 

model in performing the regression analysis of the 

data. Regarding the testing data, the model's 

performance is observed to be relatively lower than 

that of the training phase, but the results remain 

precise. Several errors can be noticed with low FC 

values, particularly those below 50 MPa. 

The distribution histogram and cumulative 

distribution of the error between the predicted and 

actual FC of the rubberized concrete for both 

training and testing parts are presented in this 

section. The distribution histogram of the error, 

which reflects the frequency distribution of the error 

range, can help identify the range and distribution 

of the errors. Among the 193 training and 82 testing 

data samples, it is observed that a significant error 

value of approximately 0 exists. It is important to 

point out that the training dataset includes only 2 

samples have errors that lie outside the range of [-

2, 2] MPa. In addition, when compared to the 

overall number of data points, this percentage of 

samples that include significant errors is negligible. 

The testing dataset contains a greater error than 

the training dataset, with a maximum error value of 

15 MPa. Furthermore, only 5 samples out of the 

total number of samples exhibit errors outside of 

the range [-10, 10] MPa, which is also an 

insignificant proportion. 

Table 3 highlights the quantitative values of 

the evaluation criteria used to assess the 

performance of the LightGBM model. It has been 

noticed that the model has a high degree of 

predictive accuracy, with an R2 value of 0.982, an 

RMSE value of 2.663 MPa, an MAE value of 1.332 

MPa, and a MAPE value of 0.109 for all data. In 

addition, a comparison between the optimized and 

default LightGBM model is also conducted. The 

results show that the default model achieved lower 

prediction accuracy compared to the optimized 

model, indicating the importance of 

hyperparameter tuning in achieving optimal 

performance. The detailed comparison metrics and 

performance measures in also presented (Table 

3). The results demonstrate that the LightGBM 

model can accurately predict the FC of the 

rubberized concrete. By doing so, the model is 

expected to contribute to high cost and time 

savings in designing and testing rubberized 

concrete. 

4.3. Feature importance 

The predictive capability of the ML model 

developed for forecasting the FC of rubberized 

concrete is substantial. Nonetheless, interpreting 

or explaining the model predictions is crucial [47], 



JSTT 2023, 3 (1), 26-43                                                                                  Ly et al 

 

 
36 

given that ML models are typically "black boxes." 

The interpretation of the model has the potential to 

aid in directing the development of the model and 

decision-making procedures, while also promoting 

user confidence in the trained model. The analysis 

of feature importance is the most common 

approach for explaining the models. Python's 

LightGBM package provides a built-in function that 

allow for the determination of input parameter 

sensitivities. The feature_importance() function 

computes feature importance scores for each input 

based on its contribution to the model's predictions, 

in which the selected method for computing is 

permutation. 

The relative importance of features for the FC 

of rubberized concrete is analyzed using the 

LightGBM model, and the results are presented in 

Fig. 7. The analysis shows that SP is the most 

critical parameter, followed by chipped rubber, 

crumb rubber, and coarse aggregate. Water (W) 

and fine aggregate are also important among the 

other parameters. Conversely, the cement content 

parameter has minor relevance, followed by SF, 

BFS, type, and FA. It can be inferred that a 

significant change in the FC of rubberized concrete 

can result from changing the proportion of SP. 

Additionally, using more or less chipped rubber, 

crumb rubber, and coarse aggregate can also 

impact the FC of rubberized concrete. The 

magnitude of the alteration in FC of rubberized 

concrete would be reduced when modifying the 

quantity of water and fine aggregate. In contrast, 

the modification of cement content, SF, BFS, type, 

and FA would not affect the FC of rubberized 

concrete. 

4.4. Partial dependence analysis  

The analysis of feature importance shows 

whether the features are significant, however, it 

does not explain the positive or negative influence 

of the variable of interest. Partial Dependence 

Plots (PDP) are graphical tools that illustrate a 

feature of interest and the predicted outcome' 

relationship, while marginalizing the effect of other 

features in a ML model. PDPs show the average 

impact of a particular feature on the predicted 

outcome across the range of values that it takes in 

the dataset. The main advantage of PDP over 

feature importance is that it provides a detailed and 

more interpretable view of how a feature influences 

the model's prediction. PDPs can reveal nonlinear 

relationships between the input and output 

variables, capture interactions between multiple 

features, and identify regions of the feature space 

where the model is most sensitive to changes in 

the feature values. Therefore, PDPs can offer 

deeper insights into the model's behavior and help 

practitioners better understand the model's 

decision-making process. 

 The PDP analysis for the 11 input 

parameters is depicted in Fig. 8. The horizontal 

axis shows the changes in input parameter values, 

while the vertical axis displays the PDP output 

value for each considered feature. The PDP 

illustrates that the input parameters have a 

comparable influence on the FC of rubberized 

concrete to the results obtained by feature 

importance analysis. By increasing the content of 

SP, the FC of rubberized concrete can be 

increased. The PDP shows that an increase in the 

content of SP from 0 to 14 kg/m3 can result in a 

significant rise in FC, from 25 to 46 MPa. This 

illustrates the strong positive correlation between 

SP content and the FC of rubberized concrete. 

However, it should be noted that a further increase 

in the content of SP could have a certain impact on 

the FC, which needs to be investigated further. In 

addition, it has been shown that a decrease in the 

FC of rubberized concrete may occur when there 

is a greater proportion of chipped rubber and 

crumb rubber present in the mixture. Specifically, 

when the content of chipped rubber and crumb 

rubber is increased, the FC can decrease from 36 

to 15 MPa and 36 to 18 MPa, respectively. The FC 

of rubberized concrete may be made higher by 

increasing the amount of coarse and fine 

aggregate that is included in the mixture. In 
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particular, changing the coarse aggregate content 

from 600 to 1100 kg/m3 increases FC from 24 to 35 

MPa. Similarly, changing the fine aggregate 

content from 0 to 800 kg/m3 increases FC from 22 

to 34 MPa. According to the findings, the impact of 

water on the FC of rubberized concrete has a 

complex relationship with the variables involved. 

Increasing the water content from 120 to 180 kg/m3 

leads to a reduction in the FC from 37 to 22 MPa. 

However, beyond this threshold, the change in FC 

is minor, ranging around 28 MPa. Within the range 

of the input space, a variation in cement content 

(from 260 to 680 kg/m3) only leads to a change of 

9 MPa in FC of rubberized concrete. It is worth 

noting that changes in the other input parameters 

result in minor changes in the FC of rubberized 

concrete. A change in SF results in a minor change 

in the FC of rubberized concrete, approximately 4 

MPa. Similarly, modifying BFS within the range of 

input space has resulted in a change of FC of only 

about 6.5 MPa. The FA feature is found to have a 

very minimal effect on the FC of rubberized 

concrete, only leading to a change of 

approximately 1 MPa. Furthermore, the type 

feature's effect on FC is insignificant, resulting in a 

change of only about 0.7 MPa. 

The PDP analysis reveals that the influence 

of the features on the FC of rubberized concrete is 

comparable to the results of the feature importance 

analysis. As a result, PDP is an effective instrument 

for gaining a knowledge of the effect that input 

factors have on the FC of rubberized concrete. The 

findings illustrate how critical it is to thoughtfully 

pick the proportions of SP, chipped rubber, crumb 

rubber, coarse and fine aggregate, and water 

content in order to get the required FC. The study 

also suggests that changes in other input 

parameters, such as cement content, SF, BFS, FA, 

and type, have a minor effect on the FC. It is 

feasible to acquire a better understanding of the 

influence that input factors have on the target 

variable by making use of PDP, which can aid in 

the optimization of rubberized concrete 

formulations for specific applications.
 

  

 
Fig. 5. Regression analysis between experimental and predicted FC of rubberized concrete for the 

training part; and testing part 
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Fig. 6. Error results (a) training set; and (b) testing set 

Table 3. Statistical criteria values for typical results of LightGBM model 

 RMSE (MPa) MAE (MPa) R2 MAPE (%) 

Finely-tuned LightGBM model 

Training part 0.565 0.397 0.999 0.031 

Testing part 4.770 3.495 0.930 0.289 

All dataset 2.663 1.332 0.982 0.109 

Default LightGBM model 

Training part 2.771 2.007 0.981 0.137 

Testing part 6.207 4.442 0.881 0.344 

All dataset 4.122 2.742 0.956 0.199 

 
Fig. 7. Feature importance analysis results 
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Fig. 8. PDP analysis of the variables considered in this work 

5. Conclusions  

This work analyzes the possibility of utilizing 

ML model and statistical approaches in the 

prediction of the CS of rubberized concrete, also 

illustrating the usefulness of applying these 

methods. In order to accomplish this goal, a 

dataset consisting of 275 samples of rubberized 

concrete is employed in developing the LightGBM 

algorithm. This method achieves a high level of 

prediction accuracy while maintaining a high level 

of efficiency, as evidenced by an R2 value of 0.982, 

RMSE value of 2.663 MPa, MAE value of 1.332 

MPa, and MAPE value of 0.109 for all data. 

The influence of each input parameter on the 

CS of rubberized concrete is investigated with the 

use of PDP. The outcomes of the feature 

importance analysis are reflected in the fact that 

the influence of each input parameter on CS is 

comparable to that of PDP analysis. The study also 

finds that the most critical input parameter for 

predicting the CS of rubberized concrete is the 

superplasticizer (SP) content, followed by chipped 

rubber, crumb rubber, and coarse and fine 

aggregates. It is also determined that the amount 

of water in the rubberized concrete has a 

complicated influence on the CS of the concrete, 

and the amount of CS drops as the water content 

increases.  

In general, the findings of this research give 

useful insights into the effects that different input 

parameters have on the CS of rubberized concrete. 

These findings may assist in the creation of 

concrete mix designs that are more efficient and 

effective. 
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