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Abstract: In this study, the influence of various factors on the heat transfer 

characteristics of the steady magnetohydrodynamic Casson nanofluid 

(Cu+Water) between two infinite parallel plates considering the Cattaneo–

Christov heat flux model is explored by means of the Akbari Ganji’s Method. 

The values of Nusselt number *
uN are also determined for different values of 

viscosity, magnetic, and volume fraction parameters and various metallic and 

nonmetallic nanoparticles (NPs). The findings reveal that the temperature 

profile (TP) decreases with rising casson fluid and thermal relaxation 

parameters. However, an increment in the TP is detected for large values of 

the volume fraction parameter, radiation parameter, Prandtl number, and 

Eckert number. It is found that the *
uN  varies proportionally with the viscosity 

and volume fraction parameters, but it is inversely proportional to the 

magnetic parameter. The results also show that different metallic and 

nonmetallic NPs have different values of *
uN . 

Keywords: Magnetohydrodynamic Casson Nanofluid, Akbari Ganji’s Method, 

Magnetic field, Cattaneo-Christov Heat Flux Model, Heat Transfer 

Characteristics. 

 

 

1. Introduction 

In recent years, researchers have focused 

on non-Newtonian fluids, which have important 

engineering and industrial applications [1-4]. 

However, it is very difficult to analyze non-

Newtonian fluids because of their complexity [5]. 
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Therefore, researchers suggested different 

models to examine them such as Casson, 

micropolar, viscoelastic, etc [5,6]. The Casson fuid 

is classifed as a non-Newtonian fuid because of 

its rheological properties [3]. The Casson fluid is a 

shear thinning liquid with infinite viscosity at zero 

shear rates and zero viscosity at infinite shear 

rates [3,5,7]. The study examined the influence of 

chemical reaction on Casson fluid flow over an 

inclined porous plate [8]. Another study 

investigated the momentum and heat transfer 

properties of Casson fluid flow over an inclined 

plate [9].  

The nanofluids consist of the base fluid (oil 

and water) containing carbide, metal, and oxide 

nanoparticles (NPs) [3,10,11]. They are special 

functional fluids that are very useful for raising the 

heat transfer rate, increasing the thermal 

conductivity, and reducing the energy loss [10, 

11]. In addition, there are some studies on the 

Magnetohydrodynamic (MHD) Casson nonofluids. 

A numerical study showed that the presence of 

magnetic fields enhances the thermal transfer 

[12]. In another numerical study by Chamkha et 

al. [13], it was shown that the Nusselt number *
uN  

is more significantly affected by laminar NPs than 

other NPs. The role of diverse parameters on the 

temperature and concentration profiles of steady 

MHD nanofluid between parallel plates was also 

established [14].  

Many different numerical and analytical 

methods such as Differential Transformation 

Method (DTM) [14-17], Homotopy Perturbation 

Method (HPM) [18-22], Akbari Ganji’s Method 

(AGM) [7,23], Runge-Kutta Method (RKM) [5,11, 

24,25], etc. have been applied to various 

problems in the fields of science and engineering. 

Among them, the AGM is one of the more recent 

and effective semi-analytical methods [7]. 

Furthermore, it is efficient and has sufficient 

accuracy compared to other semi-analytical and 

numerical methods [7,23].  

To explore the thermal relaxation time 

characteristic, the Cattaneo-Christov Heat Flux 

(CCHF) model is assumed thermally. The study 

revealed the analytical solutions for the 

temperature governing equation via CCHF model 

for coupled flow and heat transfer of an upper-

convected Maxwell fluid [26]. The study explored 

the spinning flow of viscoelastic fluids due to a 

stretching sheet by means of the CCHF model 

[27]. In another research, the steady three-

dimensional boundary layer flow and heat transfer 

characteristics to Burgers fluid was studied by 

employing the CCHF model [28]. Considering the 

CCHF model, the efficiency of the binary chemical 

reaction on MHD Casson fluid was explored by 

Reddy et al [29]. The study also examined the 

unsteady squeezing MHD nanofluid flow and heat 

transfer between two parallel plates considering 

the CCHF model [30]. The results indicated that 

the *
uN increased (decreased) with increasing heat 

source (thermal relaxation) parameter. It was also 

reported that the temperature profile (TP) 

decreased with enhancing volume fraction, 

magnetic, and thermal relaxation parameters and 

increased with increasing radiation parameter and 

squeeze number [30]. Other related studies on 

the simulation of nanofluids and heat transfer are 

also available in the literature [31–33]. The 

influence of various factors on the structural and 

mechanical features of a wide variety of metallic 

NPs such as Ni [34,35], Fe [36], AlNi [37], NiFe 

[38], etc., has been examined in recent studies 

using the molecular dynamic simulation method. 

In addition, in a very recent study [7], the analytic 

solution of steady two-dimensional laminar MHD 

flow of incompressible viscous nanofluids 

between two parallel plates has also been 

discussed by means of the AGM. The results 

showed that an increase in the magnetic and 

viscosity parameters induced a decrease in the 

velocity profile. It was also revealed that the skin 

friction coefficient increased with rising viscosity, 

magnetic, and volume fraction parameters [7]. 

This study aims to explore the impact of various 
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factors on the heat transfer characteristics of 

steady MHD Casson nanofluid (Cu+Water) 

between two infinite parallel plates considering 

the CCHF model by means of the AGM. The 

values of *
uN  are also calculated for various 

factors and metallic and nonmetallic NPs. 

2. Calculation method 

2.1. Description of the problem  

We consider a steady MHD Casson 

nanofluid (Cu+Water) flow between two infinite 

parallel plates. As depicted in Fig 1, two infinite 

parallel plates are placed horizontally at y = 0  

and y = h . The x-direction extends along the 

plate while the y-direction is vertical to the plate. 

To examine the various factors on the heat 

transfer characteristics, the CCHF model is 

applied instead of the classical Fourier's theory. 

The nanofluid is incompressible and considered 

non-Newtonian. A uniform magnetic field 0
B  is 

also considered. 
 

 
Fig 1. Schematic model of the present work

2.2. The equations of model 

2.2.1. The continuity equation 

The nanofluid is considered incompressible, 

and thus the continuity equation is defined: 

u v
0 

x y

 
+ =

 
 

(Equation 1) 

2.2.2. The momentum equation 

Under the conditions mentioned above, the 

contribution of the electric force is negligible 

compared to the contribution of the magnetic 

force, thus the governing equations for 

momentum are as follows: 

( )nf nf. .σρ ρ = +  + V V g J B  

(Equation 2) 

Where nfρ g  is the buoyancy force, J B  is 

magnetic force with ( )nfσ= J V B , nfσ  

represents the electrical conductivity, ( )u,v=V  is 

velocity vector,  ( )00,B=B  is the magnetic field, 

xx xy

yx yy

τσ
τ

σ
p

τ
σ

 
= − + 

 

=


I is the Cauchy stress 

tensor. Hence, we get that: 2
nf 0u B = − xJ B e . 

Where σ, τ, I  and τ  correspond to the 

normal stress, shear stress, 2 2  identity matrix, 

and deviatoric stress tensor, respectively. 

It should be noted here that the mechanical 

pressure (p) is ( )xx yy

1
p σ σ

3
= − + . 

Finally we get: 

( ) 2
nf nf 0 xρ V. V P τ σ B e = − +   −  

(Equation 3) 

Non-Newtonian Casson nanofluid model: 

In equation (3), the term .τ  corresponds to 
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divergence of the stress tensor and it is described 

as: 

xy yy xyxx
τ τ ττ

.τ
x y y x

     
 = + + +   

      
x ye e

 

(Equation 4) 

For two directions ( )Ox and ( )Oy , the 

following equations can be obtained: 

Projection on the x direction: 

nf

u u 1 p
u v

x y ρ x

   
+ = − + 

     
2 2 2

2nf nf
02 2

nf nf

1 u u v
1 2 B u

ρ β y ρ

μ

xx y

σ     
+ + + −  

     
 

(Equation 5) 

Where B c

y

2π
β

μ

p
=  is the Casson fluid 

parameter. 

Projection on the y direction: 

nf

v v 1 p
u v

x y ρ y

   
+ = − + 

     
2 2 2

nf
2 2

nf

1 v v u
1 2

ρ β y xy x

μ      
+ + +  

    
 

(Equation 6) 

If we do 
(6) (5)

x x
, we get that: 

ω ω
u v

x y

 
+ =

   
3 3 3

2nf nf
02 3 3

nf nf

1 v vμ u u
1 2 B

σ

ρ β ρ yx y x y

      
+ + − +  

     
 

(Equation 7) 

Where 
v u

ω
x y

 
= −
 

. 

2.2.3. The energy equation  

Under the aforementioned conditions, the 

governing equations for energy are as follows: 

( ) ( )p nf

T T
ρc u v .

x y

  
+ = −  − 

  
q

 

( ) ( )
rad nf

nfp pnf nf

q1 . 1
1

y β

μ

σρc ρc

  
+ + + 

  

J J
  

(Equation 8) 

Where: 2 2 2
nf 0σ. B u=J J  corresponds to the 

Joule heating, ( )p nf
ρc  indicates the heat capacity 

of the nanofluid, nfμ
 is the dynamic plastic 

viscosity and 

2 22
u u v v

  2 2
x y x y

        
 = + + +    

         

  represents 

the dissipation viscous function in the 2D case 

form.  

radq  represents the radiative heat flux. 

Applying the Rosseland approximation for 

radiation we acquire: 

 * 4

rad *
nf

4 T
q

y3k

σ  
= − 

 
 

(Equation 9) 

Where *σ and *
nfk correspond to the Stefan–

Boltzmann constant and the mean absorption 

coefficient, respectively. Moreover, we assume 

that the temperature difference within the flow is 

such that 4T  maybe expanded in a Taylor series. 

Finally, we find: 

* 3

rad *
nf

σ16 T T
q

y3k

 
= −


 

(Equation 10) 

The heat flux vector q is defined by the 

following equation according to the CCHF model. 

( ) ( ) ( )E nfΩ . . . k T +  +  −  = −  q V q V q q V  

(Equation 11) 

Here, EΩ  shows the relaxation time of heat 

flux and nfk represents the thermal conductivity. 

The classical Fourier’s law can be derived 

from equation (11) by applying EΩ   0= . When the 

incompressibility of the nanofluid ( ). 0 =V is used 

in Eq. (11), we have: 

( ) ( ) ( )E nfΩ k T +   +   −   = −  q V q V q q V  

(Equation 12) 

The flux vector q can be eliminated between 

the two Eqs. (8) and (12), then we get: 
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E E

T T T
u v Ω

t x y

   
+ + + = 

  


   

( ) ( )

2 2
2 2radnf nf
02 2

p pnf nf

qk T T
  B u

yx

σ

yρc ρc

   
+ − + 

  
+  

( )

2 22

nf

p nf

1 u u v v
1 2 2

β x y x yρc

μ            
  + + + +      

             

 

(Equation 13) 

Where: 

2
2

E 2

u T T v T
u u u

x x x yx


    
= + + +

     
2 2

2

2

u T v T T T
v v v 2uv

y x y y y xy

     
+ + +

     
 

(Equation 14) 

The governing equation for the heat transfer 

in this problem is given by the following equation: 

2
2

E 2

T T T u T T v T
u v Ω u u u

t x y x x x yx

        
+ + + + + 

       



  

2 2
2

2

u T v T T T
v v v 2uv

y x y y y xy

     
+ + + + 

        

( ) ( )

2 2
2 2radnf nf
02 2

p pnf nf

qk T T
  B u

ρ

σ

yx yc ρc

   
= + − + +     

 

( )

2 22

nf

p nf

1 u u v v
1 2 2

β x y x yρc

μ
             + + + +      

             

 

(Equation 15) 

Here nfρ  corresponds to the effective 

density, nfμ  shows the effective dynamic 

viscosity,  ( )p nf
ρc  represents the heat capacity 

and nfk indicates the thermal conductivity, and nfσ  

is the electric conductivity of the nanofluid. They 

are as follows [18]: 

( )nf f pρ     1 ρ     ;ρ= −  + 
 

( ) ( ) ( ) ( )
nf f p

ρCp     1 ρCp      ρCp= − +   

(Equation 16) 

f
nf 2.5

μ
μ

(1 )
=

−
 

(Equation 17) 

( )nf f p(ρCp) 1 (ρCp) (ρCp)= − +  

(Equation 18) 

( )
( )

s f f s

nf f

s f f s

K 2K 2 K K
K K

K 2K 2 K K

+ −  −
=

+ +  −
 

(Equation 19) 

( )
( ) ( )

p f

nf

p f p f
f

3 σ σ φ
σ 1

σ 2σ σ σ φ

 −
 = +

+ − −  

 

(Equation 20) 

2.2.4. The boundary conditions 

In this work, the relevant boundary 

conditions are as follows [14]: 

0y 0 y 0 y 0
u ax,  v 0, T T ,

= = =
= = =

 

hy h y h y h
u 0, v 0, T T

= = =
= = =  

(Equation 21) 

The viscosity parameter R , magnetic 

parameter M , Prandtl number rP , radiation 

parameterN , thermal relaxation parameter Eβ , 

and Eckert number Ec  are non-dimensional 

quantities and they are described as: 

2 2 *2 2
2 0 f nf nf

2 * 3
f f f

B h k kah h
R  , δ , M , N ,

υ ρ υx 4σ T
= = = =

 

( )

2 2
f pf

r c E E

f 0 h pf

c x
P , E , β Ω

k

μ α

T T c
α= = =

−
 

(Equation 22) 

Here, 1A , 2A , 3A , 4A  and 5A  are 

dimensionless constants: 

nf nf nf
1 2 3

f f f

σ

σ

ρ μ
A   , A , A  , 

ρ μ
= = =

 

( )
( )

pnf nf
4 5

f p f

ρck
A , A

k ρc
= =  

(Equation 23) 

With these boundary conditions: 

( ) ( ) ( )f 0 1 ,  f 0 0 ,  Θ 0 1    at      0= = = =  

(Equation 24) 

( ) ( ) ( )f 1 0 , f 1 0 , Θ 1 0    at      1= = = =  

(Equation 25) 

The *
uN  in this problem is defined as: 
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( )*
u 4

3N 4
N A θ' 0

3N

+ 
=  

 
 

(Equation 26) 

2.3. Homotopy Perturbation Method (HPM) 

2.3.1. Basic Idea of the HPM 

In the HPM method, the following equation 

is considered [39]: 

( ) ( )A u   f  r  0 ,     r   Ω − =   

(Equation 27) 

With the boundary condition of: 

U
B  u,  0 ,  r   Γ

n

 
=  

 
 

(Equation 28) 

Where A and B represent a general 

differential operator and a boundary operator, 

respectively. The f (r) corresponds to a known 

analytical function and Γ indicates the boundary of 

the domain Ω [39]. A differential operator can be 

divided into two parts, linear L and nonlinear N. 

Thus, the Eq. 27 becomes as follows: 

( ) ( ) ( ) ( )0H v, p 1   p L v  L u = − −   

( ) ( ) ( )p L v N v f r    0 + + − =   

(Equation 29) 

Where 
2 3

0 1 2 3v v pv p v p v= + + + +  

(Equation 30) 

And: 

0 1 2
p 1

u  limv   v v v
→

= = + + + 

(Equation 31) 

2.3.2. Implementation of the method 

According to the HPM, a homotopy can be 

formed as: (Equation 32) 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

( ) ( )

0

5
r

4

25
r E

4

22
r c

4

2 2 23
r c

4

H θ,p 1 p Θ Θ 0

A3N
Θ PR f Θ

3N 4 A

A3N
PRβ f f Θ f Θ

3N 4 A
p

A3N
PME f

3N 4 A

A3N

η η η

η

1
PE 1 4

η

  f f
3N 4 A

η η η

η

η η
β



 

  

 = − − + 

   
+ +   

+   


  
 − + +    +   

  
+ +  

+   

    
 + + +      +  

 



 



0






 
 

= 
 
 
 
 
 
   

We consider f andθ  as follows: 

( ) ( ) ( ) ( ) ( ) ( )
N

1 2 3 i
0 1 2 3 i

i 0

f η f η p f η p f η p f η   p f η
=

= + + + + =  

(Equation 33) 

( ) ( ) ( ) ( ) ( ) ( )
N

1 2 3 i
0 1 2 3 i

i 0

θ η θ η p θ η p θ η p θ η pθ η
=

= + + + +=  

(Equation 34) 

With some rearrangements based on 

powers of p–terms, we get: 0 '''' ''
0 0p : f 0, θ 0= =  

Boundary conditions: 

( ) ( ) ( )'
0 0 0f 0 1 , f 0 0 , θ 0 1     at       0= = = =  

( ) ( ) ( )'
0 0 0f 1 0, f 1 0 , θ 1 0     at       1= = = =  

(Equation 35) 

The solution of equations is obtained when 

p 1→ , will be as follows: 

( ) ( ) ( ) ( ) ( ) ( )
N

0 1 2 3 i

i 0

f η f η f η f η f η   f η   
=

= + + + + =  

( ) ( ) ( ) ( ) ( ) ( )
N

0 1 2 3 i

i 0

θ η θ η θ η θ η θ η   θ η
=

= + + + + =  

(Equation 36) 

2.4. Akbari–Ganji’s method (AGM) 

2.4.1. Basic Idea of the AGM 

The general form of equation with the 

boundary conditions is: (Equation 37) 

( )( ) ( )m

kp  : f u, u , u ,  ,u 0;    u u x   = =  

The nonlinear differential equation of p, the 

parameter u and their derivatives are considered 

as follows:  

Boundary conditions: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0 1 m 1

m 1

0 1 m 1

m 1

L L L

u x u ,u x u , ,u x u  at x 0

u x u ,u x u , ,u x u  at x L
−

−

−

−

 = =  = =


= =  = =






 

(Equation 38) 

We suppose that the solution of this 

equation is given by: 

( )
n

i 1 2 3 n
i 0 1 2 3 n

i 0

u x a x a a x a x a x a x
=

= = + + + +  

(Equation 39) 

The larger n , the more accurate the solution 

will be obtained. By inserting Eq. (39) into Eq. 

(37), the residuals can be obtained. According to 



JSTT 2023, 3 (1), 53-67                                                                                El Harfouf et al 

 

 
59 

boundary conditions and residuals at boundaries, 

the constant parameters in Eq. (38) can be 

reached [7]. 

2.4.2. Applying the boundary conditions 

(a) The boundary conditions are applied for 

the solution of the differential Eq. (39) as follows: 

When x = 0: (Equation 40) 

( ) ( ) ( )0 0 1 1 2 2u 0 =a =u u 0 =a =u u 0 = =u; a;   

And when x= L: 

( )

( )

( ) ( )

0

1

2

2 n
0 1 2 n L

2 n-1
1 2 3 n L

2 n-2
2 3 4 n L

u L =a +a L+a L +…+a L =u

u L =a +2a L+3a L +…+na L =u

u ' L =2a +6a L+12a L +…+n n 1 a L =u










−

 

(Equation 41) 

2.4.3. Application of the AGM 

Taking into account the AGM, initially, we 

introduce the residuals [7]: 

( ) ( )

( ) ( ) ( ) ( ) ( )

''''

1 2

3 3

η η

η η η η η

1
F 1 f

β

A A
R f f f f Mf

A A

 
= + 
 

   
  − − −    

   

  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

5
r

4

25
r E

4

22
r c

4

A3N
G Θ PR f Θ

3N 4 A

A3N
PRβ f f Θ f Θ

3N 4 A

A3

η η

N

η η

η

PME f
3 4

η

A

η

N

η η

η

  
= +   

+   

    − +    +   

  
+   

+   

 

  



 

( ) ( )2 2 23
r c

4

A3N 1
P ηE 1 4  f f 0

3N 4
η

A β

     + +  + =     +    
 

(Equation 42) 

The solutions of the equations are 

considered as: 

( ) ( )
9 9

i i
i i

i 0 i 0

η ,f a Θ η b
= =

= =   

(Equation 43) 

Where: R : Dimensionless viscous number, 

0B : Magnetic field ( )2 1
1 2 3 4 5kg s A ,A ,A ,A ,A ,A− −  : 

Dimensionless constants, P : Density 

( )3kg / m , μ : Dynamic viscosity ( )Pas ,σ : Cauchy 

stress tensor, P : Nano-solid-particles, nf : 

Nanofluid, v: Kinematic viscosity ( )2m / s , v: 

Velocity in y  direction ( )m / s , P: Pressure term 

(Pa), M: Dimensionless Magnetic parameter, u: 

Velocity in x direction ( )m / s ,φ  : Solid volume 

fraction, Bμ : Dynamic plastic viscosity (Pa s), nfσ : 

Electrical conductivity (siemens /m ), x,y : 

Cartesian coordinates (m), σ : Normal stress, τ : 

Deviatoric stress tensor, *
uN : Nusselt number, ije : 

Deformation rate, f : Base fluid, f , f : 

Dimensionless velocity. 

3. Results and discussion 
 

Table 1. The results obtained using the HPM and the AGM for ( )  f 1−   and ( )θ 1−   whenN  1 = ,  

Ec   0.01= , M 1= , R  1 = , δ   0.1= , β 0.8= , Eβ 0.5= , φ   0.02=  and rP 6.2= . 

R 

The results obtained using the HPM and the AGM 

HPM AGM 

 ( )f 0−    ( )θ 0−    ( )f 0−    ( )θ 0−   

0.1 4.06360928 0.83216004 4.06360927 0.83216004 

0.2 4.06777559 0.84380209 4.06777565 0.84380167 

0.5 4.08027014 0.87944411 4.08027081 0.87943730 

0.8 4.09275806 0.91616823 4.09275988 0.91613703 

1.0 4.10107958 0.94125739 4.10108251 0.94119108 

1.2 4.10939806 0.96683536 4.10940237 0.96671072 

1.5 4.12187000 1.00612573 4.12187694 1.00585024 
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Fig 2. The results acquired using the HPM and the AGM for  ( )f η  (a), ( )f' η  (b), and ( )θ η  (c) 

Table 2. Thermophysical characteristics of pure water and various metallic and nonmetallic NPs [7] 

  (Kg / m3) Cp (J / Kg) K (W / mK)  (S m-1) 

Cu 

H2O 

Al2 O3 

Ag 

Au 

8933 

997.1 

3970 

10.500 

19.300 

385 

4179 

765.0 

235 

129 

401 

0.613 

40.000 

429 

318 

5.96 * 107 

0.05 

1* 10-10 

6.3 * 107 

4.52 * 107 

 

In this study, the impacts of various factors 

on the heat transfer characteristics and the values 

of *
uN  calculated for various parameters and 

metallic and nonmetallic NPs are illustrated in the 

form of graphs and tables for clarity. To validate 

the semi-analytical solution obtained using the 

AGM, the results are compared with those 

obtained using the HPM. This comparison is 

depicted in Fig 2 and Table 1. As clearly noticed 

from Table 1 and Fig 2, the comparison indicates 

a perfect agreement. Table 2 shows the 

thermophysical characteristics of pure water and 

various metallic and nonmetallic NPs. 

The change in the TP as a function of 

casson fluid parameter β is depicted in Fig 3. Fig 

3 indicates that the TP decreases with increasing 

β. The variation in the TP versus the M is 

graphically presented in Fig 4. It is clear from Fig 

4 that the TP increases as the M increases, which 

is in good agreement with the previous report [40]. 

This change in the TP can mainly be attributed to 

the presence of the Joule heating effect, which 
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leads to the thickening of the temperature 

boundary layer. Accordingly, it is concluded that 

higher values of M parameter are more 

appropriate where the heating is required. 

 

Fig 3. The effect of β on the ( )θ η  

 

Fig 4. The influence of M on the ( )θ η  

 

Fig 5. The influence of R on the ( )θ η  

 

Fig 6. The effect of N on the ( )θ η  

 

Fig 7. The impact of Pr on the ( )θ η  

 

Fig 8. The influence of Ec on the ( )θ η  
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Fig 9. The impact of φ on the ( )θ η  

 

Fig 10. The influence of Eβ  on the ( )θ η  

Fig 5 illustrates the effect of R on the TP. It 

is found that there is an increase in the TP with 

the rise of R. 

The effect of N on the TP is presented in Fig 

6. Increasing N parameter gives rise to an 

increment in the TP as observed in Fig 6 which is 

consistent with the result of a previously published 

study [40]. 

Fig 7 depicts the influence of Pr on the TP. 

As clearly noticed from Fig 7 that the TP 

increases for large numbers of Pr. The main 

reason for this change is that a large number of Pr 

cause a significant reduction in thermal diffusivity 

and thickness of the thermal boundary layer. 

The effect of Ec on the TP is exposed in Fig 

8. It is found that the TP increases for increasing 

values of the Ec. This increase in the TP is 

expected as the Ec plays a direct role on the heat 

dissipation process. 

Fig 9 indicates the effect of volume fraction 

parameter φ on the TP. It is clear from Fig 9 that 

the TP increases with increasing φ. An 

enhancement in the φ value gives rise to an 

increment in the friction between nanofluid 

particles, resulting in an increment in the 

temperature. These results are found to be 

identical with those reported in [41]. 

Fig 10 shows how the Eβ  affects the TP. 

The change in the TP is primarily caused by the 

fact that, as Eβ  values rise, NPs need more time 

to transfer heat energy to their neighboring NPs. 

This explains the non-conductive behavior of the 

environment and results in the decay of the TP in 

the flow region. However, when Eβ 0= , the 

temperature field predominates because Eβ 0=  

represents the flow of heat moving at infinite 

speed. Contrary to the classical Fourier's theory, 

the TP appears to be suppressed when the CCHF 

model is used, which is consistent with the report 

of a published study [30]. 

Besides, from an industrial point of view, 

momentum and heat transport coefficients have 

numerous advantages. The numerical values of 

*
uN  for different control parameters and various 

metallic and nonmetallic NPs are calculated when 

c EN 1, E 0.01, φ 0.02, M 1, δ 0.1, β 0.8, β= = = = = =

0.5=  and rP 6.2= . The effect of the R on the *
uN  

is presented in Table 3. It is clear from Table 3 

that the Nu  varies proportionally with the R, which 

is consistent with the results of a previous study 

[14]. 

The variation of *
uN  as a function of the M is 

shown in Table 4. Table 4 reveals that the 
*
uN is 
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inversely proportional to the M. This result is in 

good agreement with that reported in [14]. 

Table 3. The influence of the R on the *
uN . 

R 
*
uN  

0.1 0.37837326 

0.2 0.38366676 

0.5 0.39987276 

0.8 0.41657078 

1.0 0.42797852 

1.2 0.43960852 

1.5 0.45747339 

Table 4. The variation of *
uN  as a function of the M 

M 
*
uN  

0.1 0.42883319 

0.2 0.42873799 

0.5 0.42845276 

0.8 0.42816805 

1.0 0.42797852 

1.2 0.42778922 

1.5 0.42750570 

Table 5. The *
uN values with respect to the φ 

φ 
*
uN  

0.00 0.41219198 

0.01 0.42287993 

0.02 0.43376565 

0.03 0.44485357 

0.04 0.45614831 

0.05 0.46765462 

Table 6. The values of *
uN  for various metallic and 

nonmetallic NPs 

NPs 
*
uN  

Au 0.43276765 

Cu 0.42797852 

Ag 0.42711319 

Al2O3 0.42693013 

The *
uN  values against the φ values are 

given in Table 5. The results show that the *
uN  

changes proportionally with the φ. Similar 

enhancement in the *
uN  with increasing φ was 

also reported for 2 3Al O -water nanofluid in a 

triangular duct and 2 3Al O -water and 2TiO -water 

nanofluids in turbulent flow in previous 

experimental and numerical studies [42,43]. 

The *
uN  values for various metallic (Ag, Cu , 

and )Au  and nonmetallic ( )2 3Al O NPs  are also 

determined and the obtained results are shown in 

Table 6. As distinctly noticed from Table 6, 

different metallic and nonmetallic NPs have 

different values of the *
uN . 

4. Conclusion 

This work highlights the effect of various 

factors such as cβ, R, M, φ, N, Pr,  E , and Eβ  on 

the heat transfer characteristics of the steady 

MHD Casson nanofluid (Cu +Water) between two 

infinite parallel plates considering the CCHF 

model. The governing equations are solved by 

means of the AGM. The values of the *
uN  are also 

determined for the R, M, and φ parameters and 

various metallic and nonmetallic NPs. There is a 

perfect agreement between the results obtained 

using the AGM and the HPM, confirming the 

accuracy of the AGM. The important findings 

obtained within the scope of this study are as 

follows: 

- Rising M causes an increment in the TP, 

indicating that higher values of M are more 

appropriate where the heating is required. 

-The TP decreases with increasing β while it 

increases with increasing R. 

- Increasing N, Pr,  Ec , and φ result in an 

increment in the TP. 

- A decreasing trend in the TP is found for 

large values of the Eβ . 

- The *
uN varies proportionally with the R and 

φ parameters, but it is inversely proportional to the 

M parameter. 
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- Different metallic and nonmetallic NPs 

have different values of the *
uN . 
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