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Abstract: An analytical approach for nonlinear buckling of functionally graded 

graphene platelet reinforced composite toroidal shell segments is presented in 

this paper. The Ritz energy procedure is executed, and radial pressure–

deflection expression is constituted to obtain the postbuckling strength and 

critical buckling pressure of the shells. Significant influences on the buckling 

responses of shells with three different material distribution rules and mass 

fractions of graphene platelet, and geometrical dimensions are exemplified and 

in numerical examples. 
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1. Introduction 

Functionally graded materials (FGMs) are 

new kinds of composites with outstanding thermo-

mechanic parameters which change continuously 

and smoothly through the thickness of the 

structures. In the last decade, studies on the 

mechanical responses of FGM cylindrical shells 

have been a common subject. A lot of reports focus 

on the investigations of the mechanical responses 

of cylindrical shells made by FGM. Shen and Noda 

[1] and Shen et al. [2] investigated the postbuckling 

behavior of FGM hybrid [1] and FGM [2] higher-

order shear deformable cylindrical shells under 

radially external [1] and internal pressures [2] using 

the perturbation method. The linear buckling 

responses of FGM cylindrical shells subjected to 

axially and radially combined compression were 

also investigated [3]. By using the shear 

deformation theories, Sofiyev and Hui [4] 

presented the investigations of the vibration and 

buckling of FGM cylindrical shells under radial 

pressure with mixed boundary conditions. Phuong 

et al. [5] and Nam et al. [6] developed an improved 

Lekhnitskii’s technique for spiral FGM stiffeners 

and investigated the nonlinear buckling responses 

of spirally stiffened cylindrical shells under torsional 

loads and radial pressure, respectively. 

With their transcendent material parameters, 

nanocomposites have attracted significant 

attention from a number of authors in the world. 

Two typical nanocomposites are functionally 

graded carbon nanotube-reinforced composites 

(FG-CNTRCs), and functionally graded graphene 

platelet reinforced composites (FG-GPLRCs). 

https://jstt.vn/index.php/en
https://doi.org/10.58845/jstt.utt.2023.en.3.2.19-25
https://doi.org/10.58845/jstt.utt.2023.en.3.2.19-25
mailto:nguyenthiphuong@tdtu.edu.vn


JSTT 2023, 3 (2), 19-25                                                                              Luu & Nguyen 

 

 
20 

Based on the FGM idea, these new materials are 

respectively formed by reinforcing the carbon 

nanotube (CNT), and graphene platelet (GPL) in 

the isotropic matrix. Shen [7] and Kiani et al. [8] 

studied the postbuckling and free vibration of FG-

CNTRC cylindrical shells and skew cylindrical 

shells using the perturbation method and 

Chebyshev-Ritz formulations, respectively. The 

linear buckling and vibration of shear deformable 

FG-GPLRC cylindrical shells with eccentric rotating 

were also investigated [9]. For toroidal shell 

segments, the nonlinear thermomechanical and 

mechanical buckling problems of FG-CNTRC 

shells and FG-CNTRC shells with auxetic core 

were mentioned using the Donnell shell theory and 

Galerkin method [10,11]. 

Clearly that there are no works on nonlinear 

buckling responses of radially pressured FG-

GPLRC toroidal shell segments applying the Ritz 

energy method from the above references. By 

using an analytical approach, the nonlinear 

buckling responses of FG-GPLRC toroidal shell 

segments are mentioned in this paper. The thin 

shell theory and large deflection nonlinearities are 

used and the Ritz energy procedure is executed, 

the expressions of radial pressure-nonlinear 

deflection amplitude and maximum deflection-

nonlinear deflection amplitude are obtained to 

determine the postbuckling curve and critical 

buckling pressure of the shells. Numerical 

examples validate the significant effects on the 

nonlinear buckling behavior of shells with UD, FG-

X, and FG-O distribution laws, different mass 

fractions of GPL, and geometrical dimensions.  

2. Radially pressured FG-GPLRC toroidal shell 

segments and stability equations 

An FG-GPLRC longitudinally shallow 

curvature toroidal shell segment is considered. The 

shell is under the uniformly distributed radial 

pressure load q  (in Pa). R , a , L  and h  are 

respectively the circumferential radius, longitudinal 

radius, shell length and shell thickness. The 

coordinate system of the shell is chosen as in 

Figure 1, where the Stein and McEmain 

approximation is applied to simplify the complex 

system to a quasi-Cartesian system. 

 

Fig 1. Configuration of radially pressured FG-

GPLRC toroidal shell segments 

The Young modulus of GPLRC shells can be 

calculated using the modified Halpin-Tsai 

technique, presented by [12]. 
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with GPLa  is GPL length, GPLb  is GPL width, 

GPLt  is GPL thickness. mE  is elastic modulus of 

matrix, GPLE  is elastic modulus of GPL. 

The GPL volume fraction GPLV ( )1m GPLV V+ =

, defined as [12] 

( )
( ) ( )

,
1

GPL
GPL

GPL GPL m GPL

W
V z

W W
=

−   +
 (3) 

where m  is density of matrix, GPL  is 

density of GPL. 
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The mass fraction of GPL GPLW which 

depends on three popular distribution laws of GPL 

of shells (see Figure 2) with the following functions 

[12] 

 

Fig 2. The GPL mass fraction in the directional 

thickness of shells 
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where the total mass fraction of GPL is 

denoted by *
GPLW , and ( )h 2 z h 2−   . 

The Poisson’s ratio is determined using the 

classical mixture rule as [12] 

( ) ( )1 ,GPL m GPL GPLz V V = −  +   (5) 

The forces and moments can be presented 

according to the forms 
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The stress function   can be used as the 

conditions 

, , ,,   , .y xx xy xy x yyN N N=  = − =   (7) 

The deformation compatibility equation of 

FG-GPLRC shells is presented by [10,11] 
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Circumferential closed condition for closed 

shells is expressed by [5,6] 
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The total potential energy of the shells is 

determined as 

(
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(10) 

3. Explicit solutions 

Consider a toroidal shell segments under 

uniformly distributed radial pressure with two 

simply-supported ends. The deflection form 

satisfying the simply-supported boundary condition 

is modeled in the average form, as [5,6] 
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where m  and n  are the positive integer 

numbers that present the buckling modes of the 

shells. 

The stress function can be calculated by 

combining Equation (11) and Equation (8). 

Equation (10) is rewritten by three deflection 

amplitude, then, the Ritz energy method is applied, 

i.e. 

0 1 2

0.
f f f

  
= = =

  
 (12) 

Taking into account Equation (9), Equation 

(12) leads to 
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1
2

11 0 1 132 2 2 0,f f f q+ +  − =   (13) 
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The relation between 0f  with 2f  and 1f  with 2f

can be determined from (13-14), as 
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From Equation (11), by totaling three 

amplitudes, the maximal deflection of shells is 

presented, as 
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The relation between q  with 2f  is obtained 

from the Equations (13) and (14), presented in the 

form 

3 2
11 2 12 2 13 2 16

14 2 15

.
f f f

q
f

 +  +  + 
= −

 + 
 (19) 

The maxq W h−  postbuckling curves can be 

obtained by combining Equations (18) and (19) 

with different 2f . 

The upper critical buckling for the shells can 

be obtained by applying 2 0f →  in Equations (19), 

expressed by                 

16 15 .upperq = −   (20) 

4. Numerical examples 

The critical buckling pressures of sandwich 

FGM cylindrical shells are confronted with those of 

Nam et al. [6] to verify the accuracy of the present 

work in Table 1. The work of Nam et al. [6] used 

the Galerkin method and the nonlinear classical 

shell theory. The comparison shows that the exact 

agreements can be observed.  

The material parameters of FG-GPLRC are 

chosen according to the work of Wang et al. [12] in 

this paper. 

The critical buckling pressures of the FG-

GPLRC toroidal shell segments and cylindrical 

shells with various GPL distribution rules and 

different mass fractions of GPL are presented in 

Table 2. The significant distinctions in the critical 

buckling pressures can be indicated with the 

various distribution rules. Convex, cylindrical, and 

concave shells are considered and their critical 

pressures also decrease in this corresponding 

order. The GPL mass fraction strongly influences 

the critical load of all three types of shells and three 

types of distribution laws. With only 1% of the GPL 

mass fraction also gives an outstanding advantage 

in terms of the critical pressure of shell segments 

The observed investigations show that, for 

both concave, convex, and cylindrical shells, the 

critical pressure of buckling phenomenon of FG-X 

shell is greater than that of UD shell. It can be 

explained that although with the same volume of 

GPL for both three distribution laws, GPL is more 

distributed in the two shell surfaces for FG-X shells, 

this distribution increases the stiffnesses of the 

shells, thereby increasing the critical load of 

buckling phenomenon. 

Effects of the mass fraction of GPL on the 

nonlinear postbuckling bearing capacity of shell 

segments can be observed in Fig. 3a. Clearly, the 

postbuckling strength of toroidal shell segments 

increases largely when the mass fraction of GPL 

increases, and it seems that the insignificant 

change in snap-through intensity toroidal shell 

segments is received.  

Postbuckling bearing capacity of toroidal 

shell segments with convex and concave cases 

and with different GPL distribution laws are 

presented in Fig. 3b. The investigations show that 

the snap-through buckling can be distinctly 
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observed in the cases of convex shells, oppositely, 

the slight snap-through intensity can be observed 

in the cases of concave shell segments.  

Influences of a R  ratio on the postbuckling 

bearing capacities of shells are presented in Figs. 

3c,d. For convex toroidal shell segments, the 

postbuckling bearing capacities of shells increase 

if the a R  ratio decreases, oppositely, for concave 

toroidal shell segments, the postbuckling bearing 

capacities of shell segments increase if the a R  

ratio increases. Figures 3e,f present the influences 

of R h  ratio on the postbuckling bearing capacities 

of FG-X-GPLRC and FG-O-GPLRC toroidal shell 

segments, respectively. The investigations present 

that the postbuckling bearing capacities clearly 

increase if the R h  ratio increases. 

Table 1. Comparisons of critical pressure of buckling phenomenon for sandwich FGM cylindrical shells 

with the reported work ( 0.005h = m, 2L R = , 100R h = ) 

 Volume fraction index of FGM 

0.2=k  1k =  2k =  10k =  

Nam et al. [6] 1.1474(1,6)* 1.3672(1,6) 1.4519(1,6) 1.5334(1,6) 

Present 1.1474(1,6) 1.3672(1,6) 1.4519(1,6) 1.5334(1,6) 

*The modes of buckling are in the parentheses (m,n). 

Table 2. Critical buckling pressures (MPa) of FG-GPLRC toroidal shell segments and cylindrical shells 

( 0.75m, 0.01m, 0.5mL h R= = = ) 

a  (m) GPL distribution 

*
GPLW  

0.002 0.004 0.006 0.008 0.01 

5 

(Convex shell) 

FG-X 8.32(1,6) 9.34(1,6) 10.32(1,6) 11.27(2,6) 12.19(1,6) 

UD 8.08(1,6) 8.86(1,6) 9.62(1,6) 10.35(1,6) 11.06(1,6) 

FG-O 7.81(1,7) 8.28(1,7) 8.75(1,7) 9.20(1,7) 9.64(1,6) 

 

(Cylindrical shell) 

FG-X 6.12(1,6) 6.92(1,6) 7.70(1,6) 8.45(1,6) 9.17(1,6) 

UD 5.88(1,6) 6.45(1,6) 6.99(1,6) 7.53(1,6) 8.04(1,6) 

FG-O 5.64(1,6) 5.97(1,6) 6.29(1,6) 6.60(1,6) 6.90(1,6) 

-5 

(Concave shell) 

FG-X 4.42(1,5) 5.01(1,5) 5.57(1,5) 6.12(1,5) 6.65(1,5) 

UD 4.24(1,5) 4.64(1,5) 5.04(1,5) 5.42(1,5) 5.79(1,5) 

FG-O 4.05(1,5) 4.28(1,5) 4.50(1,5) 4.71(1,5) 4.92(1,5) 
 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

Fig 3. Effects of mass fractions, distribution laws of GPL, and geometric parameters on the postbuckling 

strength of shells 

5. Conclusion 

The present work reports an analytical 

method of the buckling problem of radially 

pressured FG-GPLRC toroidal shell segments. 

Ritz energy procedure and Donnell shell theory are 

applied and the explicit results of postbuckling and 

critical buckling behavior are obtained. Numerically 

investigated examples presents the increase of the 

GPL mass fraction causes the postbuckling 

strength and critical buckling pressure to increase 

for both three distribution laws of FG-O, FG-X, and 

UD. The large influences of geometrical 

parameters on the buckling responses of shell 

segments can be also showed from the numerical 

examples. 
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