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Abstract: In the present paper, by using the higher-order shear deformation 

theory and the strain-displacement relationships of large deflection, the 

postbuckling analysis of the functionally graded graphene-reinforced 

composite laminated (FG-GRCL) parabola, sinusoidal, and cylindrical 

externally pressured panels is presented in detail. The complex curvature 

functions of the parabola and sinusoidal panels are considered. The stress 

function is approximately determined and the Galerkin process is utilized to 

achieve the stability equations of nonlinear problem. The expression of 

pressure-deflection postbuckling behavior can be explicitly obtained. The 

influences of curvature types, material properties, and geometric 

characteristics on the postbuckling behavior of panels are also considered and 

investigated. 

Keywords: Postbuckling analysis; Cylindrical panel; Parabola panel; 

Sinusoidal panel; Higher-order shear deformation theory. 

 

 

1. Introduction 

Representative structures such as plates and 

cylindrical panels are utilized widely in the 

mechanical, space, and civil technologies. The 

functionally graded graphene-reinforced 

composite laminated (FG-GRCL) structures have 

attracted many scientists interested in research in 

recent years. By using the perturbed method with 

two steps and higher-order shear deformation 

theory (HSDT), the large-deflection bending, 

thermal and mechanical buckling of nonlinear 

problem, forced vibration of FG-GRCL cylindrical 

panels and plates were analyzed [1-4]. Vibration 

and postbuckling of FG-GRCL plates under 

thermal loads were calculated utilizing NURBS 

formulations [5-7] using the first-order shear 

deformation theory [5], and HSDT [6,7]. Nam et al. 

[8,9] and Phuong et al. [10,11] used the HSDT, 

Galerkin method, and the improved homogeneous 

techniques of stiffened structures to investigate the 

nonlinear buckling and postbuckling behavior of 

FG-GRCL plates and cylindrical panels with FG-

GRCL stiffeners. In the authors’ opinion, no 

research exists about external pressured parabola 

and sinusoidal FG-GRC panels. Thus, this paper 

studies postbuckling analysis of externally 
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pressured parabola, sinusoidal, and cylindrical FG-

GRCL panels. The complex functions of curvatures 

of panels are the mathematical difficulty to 

determine the stress function form, and the 

approximate technique to obtain the stress function 

is utilized. The nonlinear formulations of the 

structures are formulated by using the HSDT and 

applying Galerkin process. The notable influences 

of the panel kind, graphene distribution rule, and 

geometric dimension on the postbuckling bearing 

capacity of the structures are initiated and 

examined. 

2. Research method 

The calculation process of this problem can 

be resumed in three steps: Firstly, the equilibrium 

equations are established utilizing the HSDT. 

Secondly, the compatibility and stress function is 

introduced. Next, the boundary conditions of 

problems are presented, and the forms of 

deflection and rotations are proposed. The stress 

function is determined with the utilization of an 

approximate technique. Finally, the Galerkin 

method is utilized to solve the obtained equations 

of the problem.  
 

 
Fig. 1. Geometric dimensions and coordinate systems of parabola, sinusoidal, and cylindrical FG-GRCL 

panels

Configurations and material characteristics 

of parabola, sinusoidal, and cylindrical FG-GRCL 

panels are considered in this section. a , b , h , and 

  are the denotes of the length of  edges, 

thickness, and maximum rise of curved mid-

surface, respectively. TheOxyz coordinate system 

is utilized, where the plane view of middle surface 

is on the Oxy  plane and z is thickness direction as 

shown in Fig. 1. 

The equations of the rise of mid-surface for 

the parabola and sinusoidal panels are presented 

as 
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Two cases of directional placement of the 

graphene sheets in the polymeric matrix are 

defined as: the armchair edges are in the 

longitudinal axis (90-layer), and the zigzag edges 

are in the longitudinal axis (0-layer). Three 

arrangements (0)10T, (0/90/0/90/0)S and (0/90)5T, 

are created. Moreover, for the graphene volume 

fraction, three distributions UD, FG-X, and FG-O 

are assessed (Fig. 1). 

Due to the nanoscale effectiveness, the 

effective parameters 1 , 2  and 3
  are instituted 

[1-4] into Halpin-Tsai model to obtain the elastic 

and shear moduli of layers, as 
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where the sub- of super-script m  and G  

emblem matrix and graphene. Gb  is the graphene 

width, Ga is the graphene length, and Gh  is the 

graphene thickness. The shear and elastic moduli 

of graphene are symbolized by 12
GG , 11,

GE  and 22
GE , 

respectively.  

The Poisson ratio of GRCL panels is 

surmised as [1-4] 

12 12 .G m
G mV V =  +   (5) 

The strain-displacement relations with the 

von Karman nonlinearities are presented as 

[2,3,9,11] 
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and ( )0 0 ,w w x y=  is the imperfection function of 

FG-GRCL panels. 

The strain compatibility equation is received 

from Eq. (7), as 
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Hooke's law for the FG-GRCL panels 

considering the temperature effect is defined as 

[2,3,9,11] 
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Substituting Eq. (6) into Eq. (10), the 

expressions of internal forces and moments of the 

FG-GRCL panels are obtained as [2,3,9,11]
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The shear force components are displayed as 
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By utilizing HSDT, the equilibrium equations 

of the imperfect panels under external pressure 

load is presented as [2,3] 
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The stress function is introduced, as 
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The first two equations of (15) are completely 

satisfied, last three equations of Eq. (15) can be 

rewritten in the forms 
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The compatibility equation (9) can be also 

rewritten in the forms 
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Three boundary conditions of panels are 

considered in this paper, as [9,11] 

Boundary condition 1: Four edges of the 

panel are freely movable and simply supported, the 

rotations, deflection, moments, and forces, are 

(FFFF) 
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Boundary condition 2: Four edges of the 

panel are immovable and simply supported. In this 

case, the rotations, deflection, moments, and 

forces, are (IIII) 
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Boundary condition 3: Four edges of the 

panel are simply supported. In this case, the freely 

movable edges 0,x x a= =  and immovable edges 

0,y y b= = (FIFI) are considered as  
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with 0xN , 0yN  are the pre-stresses in the ,x y  

directions, respectively. 

The solutions satisfied the boundary 

condition are chosen, as 
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where m  and n  are the half-wave numbers, and 

the imperfection size is  . 

The form of the stress function is referred 

from the stress function of cylindrical panels [8-11], 

as 
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where the subscripts ,s p  and c  denote the 

sinusoidal, parabola, and cylindrical panels. 

Substituting Eq. (24) into the Eq. (20), then, 

the like Galerkin method is applied, as 
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leads to the forms 
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Substituting the solution forms and the stress 

function forms into the equilibrium equations (17)-

(19), and the Galerkin method is applied, leads to  
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( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )

( )

1 2 3 4 3 7
0 0

5 6 8

9 10 11 12 13
0

1 2 3 4

5 6 7 8

2

2 0,

2 0,

2 0.

x y x y

x y

y

x y

x y

W h N W h N W

W h W h W W h W h

W h W W W h N W q

W W h W

W W h W

+  + +  +   +   + 

+ +  +  +  + + + 

+ +  + +  +  +  +  =

  +   + +  +  =

  +   + +  +

 

  









=





 (28) 

Solve the two end equations of Eq. (28), 

,x y   are obtained as 

( )

( )

1 2

3 4

2 ,

2 .

x

y

W h We We

W h We We

 = + +

 += +


 (29) 

The load-deflection relation is determined by 

substituting ,x y  into the first of (28), as 

( )

( ) ( )

( )

( )

( )

3 2 7 1
1 0

2 6

8 5

11
2 07

13
2

2 0 0,

2

2

x

y

y

h N

h e

e he

W W

W W W

W W W

W
N

e

N
h

W

W

h

q

+ 

+  + 

+ + 

+ 

+

 +  

+

+

 
+ +


+  + =

 
(30) 

where the FFFF boundary condition is 

obtained by applying 1 0 =  and 2 0 = . The IIII 

boundary condition is obtained by applying 1 1 =  

and 2 1 = . The FIFI boundary condition is 

obtained by applying 1 0 =  and 2 1 = . 

For immovable edges, 0v =  at the edges 

0,y b=  and 0u = at the edges 0,x a= the 

immovable condition at all edges is satisfied with 

the average conditions as 

,

0 0

0,

a b

yv dydx =  ,

0 0

0.

b a

xu dxdy =   (31) 

The expressions of 0 0,x yN N can be 

determined from Eq. (31), as  

( )

1 2
0

3 42 ,

x x yN

W W h W

=   +  

+ +  +
 (32) 

( )

5 6
0

7 82 .

y x yN

W W h W

=   +  

+ +  +
 (33) 

Substituting Eqs. (32) and (33) into Eq. (30) 

the relation between q  and /W W h=  is written by 

( )

( ) ( )

( )

( )

13
, ,

3 2 7 2

1

8 4 7

3

2
.

2

2

s p c

h
q

W h W

W e W

W

W W W

eW W

W W

= − 


  +  +
 
 
+ + +
 


 
+ +  + + 
 
 + +







 



 (34) 

3. Results and discussions 

To check or prove the accuracy of the 

present analysis, the postbuckling curves of 

externally pressured FG-GRCL plates are 

compared with the previous results of Shen et al. 

[1] in Fig. 2. Perceived that the good agreement is 

presented, two results coincide together. 

 

Fig. 2. Comparison of the postbuckling curves of 

FG-GRCL plates with previous results 

The postbuckling curves of three-panel types 

are compared in Figs. 3a,b,c with three types of 
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boundary condition. While the postbuckling bearing 

capacities are very close together in the case of the 

FFFF boundary condition (Fig. 3a), the 

postbuckling curves of the parabola panel show 

superiority over the other two panel types with FIFI 

and IIII boundary conditions (Figs 3b,c). Figs. 3d,e 

compare the postbuckling bearing capacities of 

FG-X (0)10 parabola and sinusoidal panels with 

three cases FFFF, FIFI, and IIII. As can be seen, 

the snap-through can be recognized only for 

perfect FIFI panels for both parabola and 

sinusoidal panels. The postbuckling curves of IIII 

panels are significantly higher than FIFI and FFFF 

panels in the large deflection domain. The 

postbuckling curves of FIFI and IIII panels coincide 

In the small deflection domain. 

 
(a) 

  
(b) (c) 

  

(d) (e) 

Fig. 3. Effects of panel type and boundary condition on the postbuckling curves of panels 
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(a) (b) 

  

(c) (d) 

  
(e) (f) 

Fig. 4. Effects of graphene distribution types, geometrical parameters and imperfection sizes on the 

postbuckling curves of panels 

Figures 4a, and b evaluate the influences of 

the distributions (UD, FG-O, and FG-X) on the 

postbuckling behavior of the (0/90)5T FG-GRCL 

parabola and sinusoidal panels. The postbuckling 

bearing capacity of the FG-O type is the smallest 

and that of the FG-X type is the largest.  

In the case of parabola panels, the snap-

through can be clearly observed for the FG-O 

panels. The influences of the a/h on the 

postbuckling curves of FIFI UD (0/90/0/90/0)S 

parabola and sinusoidal panels are displayed in 

Figs. 4c, d. The postbuckling load-carrying 

capacity for thinner panel is strongly reduced in 

both panel types, and this difference becomes 
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larger as the deflection increases. Figures 4e and f 

display the influences of imperfection on the 

postbuckling curves of FG-O (0/90/0/90/0)S FIFI 

parabola and sinusoidal panels. When the 

imperfect deflection rises, the snap-through lowers 

slightly and then vanishes. The postbuckling 

bearing capacities of imperfect cases are larger 

than those of perfect cases if the sufficiently large 

deflection is applied. 

4. Conclusions 

The external pressured postbuckling of the 

parabola, sinusoidal, and cylindrical GRCL panels 

is calculated and discussed. To overcome the 

mathematical difficulty of the complex curvature, 

the approximate technique is utilized to obtain the 

stress function of panels. The investigations give 

meaningful remarks: 

1) The postbuckling bearing capacities are 

very close together in the case of the FFFF 

boundary condition, the postbuckling bearing 

capacities of the parabola panel show superiority 

over the other two panel types with FIFI and IIII 

boundary conditions. 

2) The snap-through can be recognized only 

for perfect FIFI panels for both parabola and 

sinusoidal panels. 

3) When the imperfect deflection rises, the 

snap-through lowers slightly and then vanishes. 
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