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Abstract: This paper presents and analyzes the nonlinear buckling responses 

of cylindrical and sinusoid Functionally graded graphene platelet reinforced 

composite (FG-GPLRC) panels under axial compressive load. The higher-

order shear deformation theory is applied to establish the governing equations 

of structures. The stress function is approximated using the like-Galerkin 

method, and the Galerkin method is applied to solve the governing equations. 

The critical buckling loads and postbuckling load-deflection curves are 

expressed in explicit form. The effects of panel types, geometrical parameters, 

imperfection, and foundation on the critical buckling loads and postbuckling 

curves of cylindrical and sinusoid FG-GPLRC panels are discussed. Numerical 

results also evaluate and compare the buckling responses of cylindrical and 

sinusoid panels.  

Keywords: Graphene platelet reinforced composite; Elastic foundation; 

Sinusoid panel; Cylindrical panel; Buckling and Postbuckling. 

 
 

1. Introduction 

The functionally graded composite material 

(FGM) is an advanced composite material, with 

significant importance in technology industries. 

The excellent thermo-mechanical properties of 

FGM are the high resistance strength, high moduli, 

and low extension and heat transfer coefficients. 

Many authors focused on the FGM plates and 

cylindrical panels using different theories and 

methods, for linear buckling problems [1-2], and 

nonlinear thermal postbuckling problems [3]. The 

FGM plates reinforced by orthogonal and oblique 

stiffeners were investigated and disused using 

higher-order shear deformation theory (HSDT) 

[4,5]. More complex FGM structures such as 

cylindrical panels and doubly curved shallow shells 

are also mentioned in many publications [6,7]. 

The functionally graded carbon nanotubes 

reinforced composite (FG-CNTRC) is formed by 

combining a polymer matrix and a reinforced 

material, carbon nanotube (CNT), with the volume 

fraction of CNT changing linearly, smoothly, and 

continuously from one side to the other of 

structures. The thermomechanical properties of the 

matrix material are largely improved. The thermo-

mechanical behavior of FG-CNTRC plates was 
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studied for nonlinear thermal buckling and 

postbuckling problems [8], nonlinear mechanical 

postbuckling and buckling problems [9,10], and 

linear vibration problems [11]. 

With excellent thermomechanical 

characteristics, graphene material has 

considerably drawn the attention of numerous 

expert researchers in recent years. Graphene is 

also an excellent reinforcement for polymer matrix. 

The functionally graded graphene reinforced 

composite (FG-GRC) is also formed by combining 

a polymer matrix and graphene sheets with the 

volume fraction of graphene changing piecewisely 

in the thickness direction of structures. The 

mechanical buckling, thermal buckling, and 

vibration problems of FG-GRC laminated plates 

were studied [12-14] by using the two-step 

perturbation technique. Thermal postbuckling, 

vibration, and multi-scale buckling problems of FG-

GRC laminated plates were also investigated using 

NURBS formulation and the incremental-iterative 

type of the Ritz method [15-17]. The electro-

mechanical behavior of FG-GRC plates with the 

piezoelectric actuator was investigated using the 

finite element method [18]. Nonlinear buckling of 

FG-GRC higher-order shear deformable plates and 

cylindrical panels were investigated using the 

Galerkin method [19-22]. The buckling and 

postbuckling behavior of FG-GRC panels under 

external pressure and axial compression with 

complex curvatures such as parabola and sinusoid 

panels were also studied [23,24]. 

Next, functionally graded graphene platelet 

reinforced composite (FG-GPLRC) is also an 

advanced composite material, with advantages in 

ease of fabrication compared to FG-CNTRC and 

FG-GRC. The buckling, bending, and vibration 

behavior of FG-GPLRC plates and shells were 

mentioned in many publications [25-29]. 

In this paper, the HSDT is used and the 

approximate technique to determine the stress 

function is applied. The problems are solved using 

the Galerkin method, and the critical loads and 

postbuckling curves are obtained. Influences of 

material parameters of FG-GPLRC, elastic 

foundation, and geometrical parameters on the 

buckling and postbuckling responses of the FG-

GPLRC cylindrical and sinusoid panels are 

investigated and discussed.  

2. Material and Geometrical properties of FG-

GPLRC panels, governing equations, and 

solving problems 

An FG-GPLRC panel with a shallow 

curvature in the y-direction is considered. The 

panel is under axial compressive load xP  (in Pa). 

R , a , b  and h  are respectively the radius, 

longitudinal and circumferential lengths, and panel 

thickness. The coordinate system of panels is 

applied as in Figure 1, where the shallowness 

approximation is applied to simplify the cylindrical 

system to a Cartesian system. The panel rests on 

the Pasternak’s elastic foundation with the two 

foundation stiffnesses 1K  and 2K . 

The Young’s modulus of FG-GPLRC panels 

is determined based on the extended Halpin-Tsai 

model as follows [26]. 

( ) 1 1 GPL 2 2 GPL
m,

1 GPL 2 GPL

1 V 1 V3 5
E z E

8 1 V 8 1 V

 +   +  
= + 

−  −  
 (1) 

where   

( )
( )

( )
( )

GPL m GPL
1 1

GPL m 1 GPL

GPL m GPL
2 2

GPL m 2 GPL

E / E 1 a
, 2 ,

E / E t

E / E 1 b
, 2 ,

E / E t

−  
 =  =  

+   

−  
 =  =  

+   

 (2) 

with mE  and GPLE  are respectively the elastic 

moduli of the matrix and graphene platelet (GPL), 

GPL GPLa ,  b  and GPLt  are the length, width and 

thickness of the GPL, respectively. 

The volume fraction GPLV of the GPL 

( )m GPLV V 1+ = , defined as [26] 

( )
( ) ( )

GPL
GPL

GPL GPL m GPL

W
V z ,

W 1 W
=

+   −
 (3) 

where m  and GPL  are the densities of the 

matrix and the GPL, respectively.
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Fig 1. Configuration of FG-GPLRC panels under axial compressive load 

The mass fraction GPLW  of GPL depends on 

three popular distribution laws of GPL of panels 

with the following functions [26] 

( )

*
GPL

*
GPL GPL

*
GPL

FG- ,

W for UD-GPLRC,

z
W z 4 W for X-GPLRC

h

2 z
2 1 W for FG- ,O-GPLRC

h







= 

  
 −  

 

 (4) 

where *
GPLW  denotes the total mass fraction 

of GPL, and ( )h 2 z h 2−   . 

According to the rule of mixture, the 

Poisson’s ratio is determined as [26] 

( ) ( )m GPL GPL GPLz 1 V V , =  − +   (5) 

The configuration equations for the middle 

surface in the y-direction are respectively written 

for sinusoid panels, as 

( )z Zsin y b ,= −   (6) 

The radius R  of the sinusoid panels is 

determined, as 

( ) 
( )

3/2
2 2

2

Z cos y b b

R
bZ sin y b

   + 

 
=  

(7) 

For cylindrical panels, R  is a constant. 

The HSDT is applied to formulate the basic 

equation system of structures. The strain-

displacement relations considering the von 

Karman nonlinearities and imperfection function 

0w  are 

x,x0xx

y 0y y,y

xy 0xy y,x x,y

,xx x,x

3 2
,yy y,y

x,y ,xy y,x

,x x0xzxz 2 2

yz 0yz ,y y

z

w  
4

z h w  ,
3

2w

w
4z h ,

w

     
          
 =  +      
     
   +           

 + 
  

− +  
 
 + +   

+           
= −     

  +           

 
(8) 

with 

2
,x

,x ,x 0,x

0x 2
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0y ,y ,y 0,y

0xy
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0xz
,y 0,x ,x 0,y

0yz

,x x
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w
u w w

2

w w
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w  
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    + + −      
 =   + + 
        + +       + 

 
+   

 (9) 

where 0xx 0yy 0xy 0xz 0yz, , , ,      are the strains 

at mid-plane of panels. 

The relations between internal forces with the 

strains, rotations, and deflection are obtained as 
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x
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,
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 (10) 

The shear and higher-order shear forces can 

be obtained as 

x 44 ,x 44 x y 55 ,y 55 y

x 66 ,x 66 x y 77 ,y 77 y

J K w K , J K w K ,

S K w K , S K w K ,

= +  = + 

= +  = + 
 (11) 

The compatibility equation can be 

determined as  

2
0xx,yy 0yy,xx 0xy,xy ,xy 0,xx ,yy

,xx
,xx ,yy ,xx 0,yy ,xy 0,xy

w w w

w
w w w w 2w w .

R

 +  −  = −

− − − +

 (12) 

The equilibrium equation system of the FG-

GPLRC panels under axial compressive load is 

obtained as 

( )

( )

( ) ( )

( )

( )

( )

x,x xy,y xy,x y,y

y,y x,x x,x y,y

y
x,xx xy,xy y,yy

x ,xx 0,xx ,xy 0,xy xy

2
y ,yy 0,yy 1 2

x,x xy,y x,x xy,y x x

xy,x y,y xy,x y,y y y

N N 0,  N N 0,

J J 3 S S

N
T 2T T

R

N w w 2 w w N

N w w K w K w 0,

M M T T 3S J 0,

M M T T 3S J 0.

+ = + =

+ −  +

+ + + +

+ + + +

+ + − +  =

+ −  + − − =

+ −  + − − =

 (13) 

The stress function   can be introduced as 

x ,yy y ,xx xy ,xyN , N , N 2 .=  =  = −   (14) 

Substituting Eqs. (10) , (11) and (14) into the 

last three equations of Eq. (13), yields the following 

equations 

( )

( ) ( )

( )

( )

,xxxx 1 ,xxyy ,yyyy

*
11 ,xxxx 2 ,xxyy 3 x

4 x 5 y ,yyyy

7 x ,yy 0,yy ,xx 6 y
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21 12
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R
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
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+ +

++ 
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
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 (15) 

 

,xxx ,xyy

,xx ,yy ,xy
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5 x 6 x 7 y 8 ,x

66 x 44 x

q q q q

q

w

q q

w

w

K 0

q
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 

=

 (16) 

 

1 2 3 ,xxy 4 ,yyy

8 ,y 5 x 7

,xxy ,yyy

, 6

77 y 55 y

xy y,yy y,xx

h h h w w

w

h

h

3 K K 0,

h h h

+ + +

+ +  +  + 

+  − 

 

 =

 (17) 

The new form of compatibility equation can 

be obtained by substituting Eq. (10) into Eq. (12), 

and then taking into account Eq. (14), as 

( )

* *
11 ,xxxx 22 ,yyyy 1

2,xx
,xx ,yy ,xx 0,yy ,xy

*
,yy 0,xx ,xy 0,xy

,xxyy

,xyy

,

21 ,xxxx
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6 y 5yyy ,xxy ,xx3 xy x

w
w w w w w

w w w w F w

F w

B B e

R

2

e e

e e

w

,e 0

   +  +

+ + + −

+ − −

− + + 

+  + 









=+

 
(18) 
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The simply supported and freely movable 

boundary condition is considered at all edges, as 

y xyy 0,b y 0,by 0,b

x y y y0y 0,b y 0,b

x xyx 0,a x 0,a x 0,a

y x x x0 xx 0,ax 0,a

M 0, w 0, N 0,

0, T 0, N N 0,

M 0, w 0, N 0,

0, T 0, N N hP ,

= =
=

= =

= = =

==

= = =

 = = = =

= = =

 = = = = −

 (19) 

The analytical solutions can be chosen in 

approximate forms, as 

x x

y y 0

w W sin x sin y, cos x sin y,

sin xcos y,w h sin x sin y

=    =   

 =    =   
 (20) 

where   is the imperfection size,

  =   = ,m a n b  with m  and n  are the 

buckling modes of panels.  

The approximate stress function is chosen to 

be the same form as the exact form of cylindrical 

panels [21,22], as 

1 2

y02 2 x0
3

sin x sin y cos2 x

N N
cos2 y x y ,

2 2

 =    +  

+  + +
 (21) 

The parameters of the stress function can be 

obtained by substituting Eqs. (20) and (21) into Eq. 

(18), and applying the like-Galerkin method, as 

b a

0 0

b a

0 0

b a

0 0

cos2 x dxdy

cos2 y dxdy

sin x sin y dxdy 0.

 

=  

=    =

 

 

 

 (22) 

Substituting Eqs. (20) and (21) into the Eqs. 

(15-17), and then applying the Galerkin procedure 

for the resulting equations yields  

( ) ( )

( )

( ) ( ) ( )

( ) ( )

1 x0 2 y0 11

7

6 8

y0

3
3 x 12 9

y

x 10 4 y5

y N h W y N h W y N

y y W W y W 2 h W

h W W 2 h W h W

y

y y

h W y W h W y ,y 0

 + +  + +

+  + + +  +

+  +  +  +  +

+  +  +  + +  =

 (23) 

( )1 x 2 y 4 3c c c W c 2 h W W 0, +  + +  + =  (24) 

( )5 x 6 y 8 7c c c W c 2 h W W 0, +  + +  + =  (25) 

Solving  ,x y  from Eqs. (24), (25), then 

substituting the obtained results with 0x xN hP= −  

into Eq. (23), the expression of the postbuckling 

curve can be obtained 
 

( ) ( ) ( ) ( )
( )

3 2
7 8 5 7 6

x

1

W W W W Wy h a a 2 a a 2
P

W W
,

h

W

x W

W+ +  + +  + +  +  +
=

 +
 (26) 

where W W h= . 

By applying W 0→  into Eq. (26), the 

expression of the critical buckling compressive 

load of perfect FG-GPLRC cylindrical and sinusoid 

panels can be obtained as 

8
cr

1

a
P ,

x h
= −  (27) 

3. Numerical examples  

The results of FGM cylindrical panels are 

compared with those of Bich et al. [6] and Dung and 

Dong [7] to verify the accuracy of the present work 

in Table 1. The work of Bich et al. [6] used the 

nonlinear classical shell theory (CST), meanwhile, 

Dung and Dong [7] used the HSDT. 

The comparison shows that good 

agreements can be observed. 

In this paper, the material parameters of FG-

GPLRC are chosen according to the work of Wang 

et al. [26]. The critical compressive loads of the FG-

GPLRC cylindrical and sinusoid panels with 

different GPL distribution laws and different weight 

fractions of GPL are presented in Table 2. The 

significant differences in the critical buckling loads 

can be obtained with the different distribution laws. 
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Additionally, the large effects of the weight fraction 

of GPL can be observed in this table. The critical 

buckling compressive loads strongly increase with 

only the addition of 1% mass fraction of GPL. The 

FG-X distribution law shows the superiority of the 

critical buckling load of the FG-GPLRC panels, and 

this superiority can be more clearly observed as 

the mass fraction of GPL increases.

Table 1. Comparison of critical loads of FGM cylindrical panels with the previous works (108N.m-2) 

a h  Bich et al. [6] (CST) Dung and Dong [7] (HSDT) Present 

100 9.85 9.84 9.84 

90 10.80 10.78 10.78 

60 16.13 16.10 16.10 

50 19.52 19.44 19.44 

40 25.70 25.53 25.53 

30 39.07 38.52 38.52 

20 77.26 74.54 74.54 

10 283.50 244.58 244.58 
 

Table 2. Critical compressive load (GPa) of FG-GPLRC panels (h =0.01m, a b 20h= = , Z 1.5h= ,  =0, 

m n 1= = , 1K = 50 MN/m3, 2K = 0.5 MN/m) 

 
Type 

*

GPLW
 

 0% 0.25% 0.5% 0.75% 1% 

UD 
Sinusoid panel 2.482 2.809 3.123 3.426 3.717 

Cylindrical panel 2.445 2.767 3.076 3.374 3.661 

FG-X 
Sinusoid panel 2.482 2.884 3.264 3.623 3.963 

Cylindrical panel 2.445 2.842 3.217 3.571 3.907 

FG-O 
Sinusoid panel 2.482 2.728 2.964 3.190 3.407 

Cylindrical panel 2.445 2.686 2.917 3.139 3.351 
 

Postbuckling curves of FG-GPLRC panels 

with cylindrical and sinusoid cases are presented 

in Fig. 2a. A slight advantage of sinusoid panels in 

critical buckling load over cylindrical panels can be 

observed, however, the snap-through intensity of 

sinusoid FG-GPLRC panels is slightly greater than 

that of cylindrical FG-GPLRC panels. Effects of 

geometrical parameters of UD and FG-O panels on 

the postbuckling curves are presented in Figs. 

2b,c. The postbuckling strength of panels strongly 

increases when the a/h ratio decreases, however, 

the snap-through phenomenon also strongly 

increases. The rise of the FG-GPLRC panels 

strongly affects the upper critical buckling load of 

the panels, however, the critical buckling load does 

not change much when changing the rise (Fig. 2c). 

Figure 2d presents the effects of the distribution 

laws of GPL on the postbuckling curves of sinusoid 

FG-GPLRC panels. Similar to the results of critical 

buckling loads, the postbuckling strength of the 

FG-X panel is also overwhelmingly dominant. The 

tendencies of postbuckling curves of panels with 

three distribution laws are quite similar. A large 

amount of GPL is distributed far from the middle 

surface, causing the stiffnesses to increase, 

leading to a significant increase in the  load-bearing 

capacity of panels 

Effects of the mass fraction of GPL on the 

nonlinear postbuckling strength of the sinusoid FG-

GPLRC panel are presented in Fig. 2e. Clearly, the 

postbuckling strength of the panel increases 

largely when the mass fraction of GPL increases, 
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and it seems that the insignificant change in snap-

through intensity of FG-GPLRC panels can be 

observed. Of course, the higher the mass fraction 

of GPL, the higher the panel's elastic modulus, 

leading to a higher load-bearing capacity of the 

panel. 

Effects of elastic foundation and imperfection 

size on the postbuckling strength of cylindrical FG-

GPLRC panels are presented in Fig. 2f.  As can be 

seen the postbuckling curve is upper with larger 

values of foundation parameters. The imperfection 

of panels also strongly influences the postbuckling 

curve. Due to the imperfection of the panel, the 

membrane state of the panel does not appear, 

leading to no branching phenomenon for the 

imperfect panel. In addition, the snap-through 

phenomenon strongly decreases with the imperfect 

panels. 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 2. Effects of panel type, mass fractions and distribution laws of GPL, geometrical parameters, and 

elastic foundation on the postbuckling curves 
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4. Conclusion 

This paper presents an analytical approach 

to the nonlinear buckling of FG-GPLRC cylindrical 

and sinusoid panels. The HSDT and Galerkin 

method are applied and the formula of the critical 

loads and postbuckling curves are obtained. The 

stress function is introduced and determined using 

an approximate technique. Numerical examples 

present the increase of the GPL mass fraction 

causes the critical buckling loads and postbuckling 

behavior to increase for both three distribution laws 

of UD, FG-X, and FG-O. A slight advantage of 

sinusoid panels in critical buckling load over 

cylindrical panels can be observed, however, the 

snap-through phenomenon of sinusoid FG-GPLRC 

panels is slightly greater than that of cylindrical FG-

GPLRC panels. In addition, the large effects of 

material and geometrical parameters on the 

buckling behavior of panels can be observed from 

the numerical investigations. 
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