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Abstract: The main objective of this study is to predict accurately the load-

deflection of composite concrete bridges using two popular machine learning 

(ML) models namely Random Tree (RT) and Artificial Neural Network (ANN). 

Data from 83 track loading tests conducted on various bridges in Vietnam were 

collected and analyzed. Various input parameters namely bridge's cross-

sectional shape, length of concrete beam, number of years in use, height of 

the main girder, distance between the main girders were selected for the 

modelling. Validation indicators like R, RMSE, and MAE, and Taylor diagram 

were used for validation and comparison of the models. Results of this study 

showed that both RT and ANN are good for prediction of the load-deflection of 

composite concrete bridges, but RT outperforms ANN. Thus, the developed 

ML models can facilitate efficient bridge health monitoring and management 

by predicting the load-deflection of simple-span concrete bridges.  

Keywords:  Load–deflection, prediction load–deflection, simple-span concrete 

bridges, machine learning, prediction. 

 

 

1. Introduction 

Load-deflection in bridges refers to how 

much a bridge bends under various loads. This 

deflection is influenced by factors such as the 

bridge’s weight, the weight of vehicles or 

pedestrians, wind load, and the properties of the 

bridge’s material. The deflection is one of the 

important indicators to evaluate the safety level of 

the bridge structure. In the 1930s the Bureau of 

Public Roads attempted to provide a correlation 

between bridge vibration problems and bridge 

structural characteristics. They studied the 

vibrations of bridge structures. This study 

concluded that structures having unacceptable 

vibrations determined by subjective human 

response had deflections that exceeded L/800 , 

and this conclusion resulted in the L/800 deflection 

design limit [1]),  In the 1970s, Wright and Walker 

performed a study reviewing the rationality of the 

deflection limitation provisions and Roeder, et al. 

revisited the subject decades later in 2020 [2] 

suggesting that the current AASHTO live load 

deflection limits L/800 for vehicular traffic bridges 

and L/1000 for pedestrian are not always sufficient 

in controlling excessive bridge vibration and should 

ultimately be removed. AASHTO specifications 

require that deflections be controlled by limiting 

span-to depth ratio L/D   preferably great than 1/25 

for composite steel bridges and by limiting the 

maximum unfactored deflection to: 
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• L/800 for most design situations, and 

• L/1000 for urban areas where the structure 

may be used in part by pedestrian traffic where L is 

the span length of the girder. 

Bridges designed by the AASHTO LRFD 

Specification have an optional deflection limit, 

evaluating AASHTO live-load deflection limits 

showed that the justification for existing deflection 

limits was not clearly defined and the best available 

information indicated that they were initiated to 

control undesirable bridge vibrations and assure 

user comfort.  

Vibration control is often achieved through a 

relationship between the first flexural natural 

frequency of the bridge and live-load deflection. 

Reducing the deflection will increase the stiffness 

of the bridge and reduce the vibration of the bridge, 

but this is clearly not the way to go. 

 Today, to achieve economic and technical 

efficiency. People tend to reduce the cross-

sectional size of the structure, using materials 

(concrete and reinforcement) with high strength. 

That can lead to excessive deformation (deflection, 

lateral displacement) of the structure. Excessive 

deformation may affect the normal use of the 

structure: unsightly or cause fear to road users, or 

cause traffic insecurity. Therefore, it is necessary 

to calculate and predict the actual exploitation 

deflection of the work and control it not to exceed a 

specified limit value. 

In recent years, advanced Artificial 

Intelligence (AI) models are used for solving 

prediction problems such as prediction of 

properties of construction materials and structures 

based on training with past data. Hoang et al. [3] 

indicated that Gaussian process regression (GPR) 

can be used to estimate the compressive strength 

of high-performance concrete with good learning 

performance. Yuvaraj et al. [4] predicted fracture 

characteristics of high strength and ultra-high 

strength concrete beams by using Support vector 

regression (SVR). The predicted results were in 

good agreement with the experimental values. 

Hoan et al. 2020 [5] an AI technique called 

gene expression programming (GEP) to generate 

a deflection model for predicting the deflection of 

reinforced concrete (RC) beams using fibre 

reinforced polymer (FRP) bars as the main 

reinforcements through the effective moment of 

inertia. 

Thus, bridge deflection due to live load is one 

of the important parameters to ensure good control 

of bridge vibration and construction safety. 

Theoretical deflection due to test load can be 

determined by methods of structural mechanics 

depending on bridge length, bridge stiffness (EI) or 

can be controlled based on span-to depth ratio. 

However, the design data often have certain 

differences with the actual exploitation, especially 

the bridge works have been exploited for 20 years 

or more. Deterioration of reinforced concrete 

bridge decks is an increasing problem in all types 

of bridge superstructures, and it is caused by 

various internal and external factors. Bridge deck 

deterioration reduces service life by reducing load 

capacity of the structure and the quality of the riding 

surface. One of the factors is bridge deterioration 

is attributable to excessive bridge flexibility and 

deflection. 

Therefore, predictive studies on the actual 

operational deflection of the works, especially the 

old ones, are important for assessing the current 

status of the bridge to ensure the load-carrying 

capacity and service life and safe operation of 

bridge works. In addition, predicting the deflection 

development due to live load of the bridge over 

time of operation is of great significance to help the 

bridge design step have a better orientation on the 

life and load capacity of the structure. 

In this paper, the authors use artificial 

intelligence methods to evaluate the influence of 

geometrical characteristics, year of operation and 

the time of load testing to the maximum load test 

deflection of concrete bridges in order to create a 

premise for building models to predict the 

deflection change due to bridge live load over time 
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of operation.  

2. Materials and Methods 

2.1. Predicting load–deflection of concrete 

bridges 

The principe of mesurant the deflections 

truck-loading test is to determine the displacement 

of the measuring point in the vertical direction, 

which is determined by the following formula 

V=
n2-n1

k
 (1) 

In which: 

n1 – readings on the Dial indicator in the 

absence of load; 

n2 – readings on the Dial indicator during truck-

loading test; 

k – amplification factor of indicator. 

Calculating deflections in any structural 

member can be quite challenging. There are many 

variables and factors that contribute to the 

deflection analysis. These factors include, but are 

not limited to, the sustained loading, elastic vs. 

inelastic behaviour, the elastic modulus of 

concrete, and the moment of inertia. The maximum 

deflection of a concrete beam occurs at the 

midspan of the beam for central concentrated load 

P. Assuming elastic behaviour, the deflection can 

be calculated using Equation 2-2  

gi = 
PL

3

48EI
  (2) 

For simple support beams, the mid-span 

deflection is determined as Equation 2-3: The 

deflection caused by 1 axle of the vehicle at the 

section x distance from the support beams. 

ΔLL=g(1+IM)
P(Ltt-a)x[Ltt

2
-(Ltt-a)

2
-X

2
]

6LttEI
 (3) 

In which: 

a- Is the distance from the load to the left 

boundary; 

Ltt- Calculated length of concrete beam; 

x- Is the distance from section calculated to the 

left boundary; 

E- modulus of elasticity; 

I-  moment of inertia; 

g- load distribution coefficient; 

1+ IM- dynamic amplification factor. 

To calculate the deflection of the vehicle, we 

apply the above formula to calculate the deflection 

due to each axis, then add the deflection due to the 

axes together. The most unfavourable loading on 

the influence line at the mid-span cross-section. 

The maximum deflection of a concrete beam 

occurs at the midspan of the beam for a uniformly 

distributed load q of live load across the length of 

the beam: 
4

tt
LL

gqL5

384 EI
 =  (4) 

So, when calculating the deflection in 

equation 2-3, if the vehicle load has many axes, 

apply the above formula to calculate the deflection 

caused by each axis and then take the total 

deflection due to those axes. 

Thus, the deflection due to live load or due to 

permanent load both depends on the stiffness of 

the structure (EI), length of concrete beam L, load 

distribution coefficient of the bridge.  

The study was carried out by the results of 

load testing of more than 80 bridges across all 

regions of Vietnam with the operation period from 

4 years to 43 years from the time of commissioning 

to the time of load testing of the bridges. Most of 

the data on measurement tests performed by the 

authors, the rest is taken from the database of the 

Road Administration of Vietnam http://vbms.vn/. 

The works selected for the study are all in the form 

of T-Girder Bridge Deck – girder structures simple 

support beams with lengths varying from 12m to 

33m. 

The truck-loading test was carried out at the 

site of the bridge by truck with a load of 300kN. The 

truck-loading test is carried out by placing the 

vehicle in the right centre and eccentricity method, 

in order to select the largest measured bridge 

deflection.  

Experimental equipment: Deflection 

experiments using dial indicator, measure in 0.01 

mm increments with this large dial indicator Comes 
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with limit pins and an outer frame clamp, mounted 

at the bottom of the beam at the mid-span position. 

This result can be most clearly determined by 

the chart in Figure 1 below when conducting a load 

test of 75 bridge processes: 

 

Figure 1. The diagram influence length of 

concrete beam on the load-deflection 

In addition, one of the factors that has the 

greatest influence on the load-deflection is the 

years of exploitation. Figure 2 shows the 

relationship between the load-deflection and the 

years of exploitation. 

 

Figure 2. The relationship between the load-

deflection and the years of exploitation 

The chart in Figure 2 was built from the 

results of testing 15 simple-span reinforced 

concrete beam bridges with a length of 24.7m 

located on National Highway. With quite similar 

operating conditions, when these bridges are all in 

the Central and Southern regions, the main beams 

are prefabricated at the factory with the same 

technology, but different exploitation times will lead 

to a certain change in measured deflection which 

is proportional to the exploitation time, the longer 

the bridge is in operation, the larger the measured 

deflection value. 

Therefore, in order to be able to study using 

artificial intelligence to predict the structural 

deflection of reinforced concrete bridges with 

simple support beams, it is possible to select 

parameters to bridge stiffness (height of main 

girder, cross-sectional shape, etc.), a parameter 

related to the load distribution coefficient (distance 

between the main girders) and the length of 

concrete beam L. From there, a complete picture 

of the influence of the parameters on the results of 

spherical deflection can be built. 

2.2. Data used 

Table 1. Statistical analysis of data used in this 

study 

No   ∑ Mean Std Min 25% 50% 75% Max 

X1 

cross-

sectional 

shape 

83 1.651 0.48 1 1 2 2 2 

X2 

length of 

concrete 

beam (m) 

83 24.62 6.40 9 21 24.54 33 35 

X3 
Year of 

exploitation 
83 20.47 10.71 4 14 15 22 43 

X4 

height of 

main girder 

(m) 

83 1.308 0.26 0.9 1.07 1.21 1.64 1.73 

X5 

distance 

between 

the main 

girders (m) 

83 1.96 0.57 0.95 1.52 2.25 2.4 2.75 

Y 

maximum 

truck-

loading test 

deflection 

(mm) 

83 7.036 3.00 1.06 4.66 6.945 9.16 15.72 

In this work, the collection of data from 83 

bridges located in different parts of Vietnam, with 

varying periods of use ranging from 4 to 43 years 

was done to build the database for Machine 

Learning. For the modelling, five parameters 

namely X1 (bridge's cross-sectional shape), X2 

(length of concrete beam), X3 (number of years in 

use), X4 (height of the main girder), and X5 

(distance between the main girders) were selected 

as input variables while one maximum truck-
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loading test deflection as output variable (Y). Out 

of these, the maximum truck-loading test deflection 

was measured in millimetres using a deflection 

measurement of a dial indicator with 0.01mm 

increments during a truck-loading test using a 

300kN load mounted at the mid-span position on 

the bottom of the beam with limit pins and an outer 

frame clamp. In addition, the data included two 

bridge's cross-sectional shape (I and T coded as 1 

and 2). Figure 3 shows the distribution of input and 

output values. Data of this study was also 

presented in Ha et al. [6] and Le et al. [7]. 

 
Figure 3. Distribution analysis the data used in this study 

2.3. Methods used 

2.3.1. Random Tree (RT) 

RF algorithm - a popular ML technique was 

first introduced by Leo Breiman and Adele Cutler in 

2001 [8]. It is based on the concept of decision 

trees, but instead of using a single decision tree, 

Random Forest builds an ensemble of decision 

trees, which are combined to make predictions [8]. 

In RT, multiple decision trees are built on different 

subsets of the data and features, and the 

predictions of the trees are combined to make the 

final prediction [9]. In each iteration of the 

algorithm, a random subset of the data and a 

random subset of the features are selected for 

building the decision trees [10], which helps to 

reduce the risk of overfitting and improves the 

generalizability of the model. 

RT has been applied in a wide range of 

applications, including finance, healthcare, and 

bioinformatics. In this work, RT was used as a base 

model to develop various novel ensemble models 

for prediction of vertical deflection of steel-concrete 

composite bridges 

2.3.2. Multi-layer perceptron (ANN) 

Artificial neural network is a set of 

interconnected nodes used for understanding and 

solving modelling problems that have complex 

relationships between causal factors and 

responses. Multi-layer Perceptron Neural Network 

(MLP) is one of the most effective artificial neural 
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network techniques for modelling and prediction, 

thus it has been used as the benchmark model by 

many researches The MLP has a high capability of 

universal approximation such that it. 

2.3.3. Validation indicators 

In this study, correlation coefficient (R), Root 

mean square error (RMSE) and mean absolute 

error (MAE) which are statistical terms commonly 

used in data analysis for evaluation of the 

performance of ML models, were selected for 

validation of the proposed models. R is a statistical 

measure that quantifies the strength and direction 

of the relationship between predicted and actual 

values. It is a value that ranges between -1 and 1, 

with -1 indicating a perfect negative correlation, 0 

indicating no correlation, and 1 indicating a perfect 

positive correlation [11,12]. RMSE is calculated by 

taking the square root of the average of the 

squared differences between predicted and actual 

values [13]. MAE is calculated by taking the 

average of the absolute differences between 

predicted and actual values. MAE is less sensitive 

to outliers than RMSE and is a good choice when 

the data has a non-normal distribution [13]. RMSE 

and MAE are two common metrics used to 

evaluate the accuracy of predictive models in 

statistics and ML. Lower RMSE and MAE indicates 

better performance of the predictive models 

[14,15].  

In addition to RMSE, MAE, and R, Taylor 

diagram was also used to compare the 

performance of different ML models in this study. It 

is a polar coordinate plot that shows how well a set 

of model simulations match observed data in terms 

of their R, RMSE, MAE, and standard deviation 

[16]. Each model simulation is represented by a 

point on the diagram, and the closer the point is to 

the reference point (which represents the 

observations), the better the model's performance  

3. Results  

Model training was carried out using training 

dataset. In order to obtain the good performance, 

the models were trained with the hyper-parameters 

indicated in Table 2.  

Table 2. Hyper-parameters used for training the 

models 

No Hyper-parameters 
Models 

RT ANN 

1 Batch size 100 100 

2 Debug False False 

3 Do not check capabilities False False 

4 Num decimal places 2 2 

5 KValue 0 - 

6 
Allow unclassified 

instances 
False - 

7 Break ties randomly False - 

8 Min variance prop 0.008 - 

9 Num folds 0 - 

10 Gui - False 

11 Auto build -- True 

12 decay - False 

13 Seed 1 0 

14 Hidden layers - 5 

15 Learning rate - 0.3 

16 Momentum - 0.2 

17 Nominal to binary filter - True 

18 Normalize attributes - True 

19 Normalize numeric class - True 

20 Max Depth 0 - 

21 Min num 3.0 - 

22 Reset - False 

23 Resume - False 

24 Training time - 500 

25 Validation set size - 0 

26 Validation threshold - 20 

Validation of these two models was also 

carried out on both training and validating datasets 

using various statistical methods (R, RMSE, and 

MAE), and the results are shown in Figure 4, Figure 

5 and Table 3. Figure 4 a,b shows the R values of 

RT and ANN models using training dataset. It 

shows that the R value of RT (0.894) is higher than 

that of ANN (0.762). Figure 4 c,d shows the R 

values of RT and ANN models using validating 

dataset. It shows that the R value of RT (0.850) is 

higher than that of ANN (0.730). Figure 5 shows 

the plots of predicted and actual values of the 

vertical deflection of bridges using two models. It 

can be seen that on both training and validating 

datasets the predicted values are much close to 

the actual values. With RMSE, it can be observed 
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from Table 3 that the RMSE value of RT (1.4) is 

much lower than that of ANN (2.492) in the case of 

training dataset. Table 3 also shows that the MAE 

value of RT (0.769) is much lower than that of ANN 

(2.01) in the case of training dataset. Similarly, the 

MAE value of RT (1.46) is lower than that of ANN 

(1.992) in the case of validating dataset. Analysis 

of Taylor diagram shows that RT is the nearest 

point to the reference line compared with ANN for 

both training and testing datasets (Figure 6). 

Generally, both RT and ANN models 

performed well for prediction of the load–deflection 

of steel-concrete composite bridges in this study 

but RT outperforms ANN. 
 

  

 
 

Figure 4. R values of the models: (a) training RT, (b) training ANN, (c) testing RT, and (d) testing ANN 
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Figure 5. Actual and predicted values of the models (a) training dataset and (b) testing dataset 

Table 3. Evaluation of the models 

No Parameter 
Training dataset Testing dataset 

R MAE RMSE R MAE RMSE 

1 RT 0.894 0.769 1.40 0.85 1.46 1.808 

2 ANN 0.762 0.201 2.492 0.73 1.992 2.321 

 

 

Figure 6. Evaluation of the models using Taylor 

Diagram 

4. Conclusion 

In this study, two state of the art ML models 

namely RT and ANN were applied and compared 

for prediction of the load–deflection of steel-

concrete composite bridges using 83 track loading 

tests at 83 bridges of Vietnam with five input 

variables namely X1, X2, X3, X4, X5. Various 

validation methods namely R, RMSE, and MAE 

were selected for evaluation and comparison of the 

performance of the models. Results showed that 

both RT and ANN performed well for prediction of 

the load–deflection of steel-concrete composite 

bridges but RT has a better performance compared 

with ANN. Thus, it can be concluded that RT is a 

powerful tool in prediction of the load–deflection of 

steel-concrete bridges. Finding of this study might 

help the bridge engineers in quick and accurate 

prediction of the load–deflection of steel-concrete 

bridges which will help in saving time and costs for 

bridge health monitoring and assessment. The 

limitations of this study primarily stem from the 

restricted number of tests utilized in the data set. 

The scope for enhancing the accuracy and 

reliability of the predictions could be broadened by 

increasing the number of tests. Furthermore, future 

research could explore the application of more 

advanced machine learning models, such as deep 

learning or hybrid/ensemble ML techniques, to 

potentially improve the predictive performance. 
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