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Abstract: This study delves into the application of machine learning (ML), 

specifically a Gradient Boosting (GB) model, for predicting the punching shear 

strength (PSS) of two-way reinforced concrete flat slabs. Leveraging a dataset 

comprising 241 experimental observations from reputable sources, the 

research investigates the influence of critical factors on PSS, including slab 

thickness, column section width, effective slab depth, reinforcement ratio, 

concrete compressive strength, and reinforcement yield strength. 

Hyperparameter optimization techniques are employed to fine-tune the 

model's parameters, leading to enhanced predictive performance. Monte Carlo 

simulations are utilized to validate the model's reliability and generalizability. 

The results demonstrate that the GB model achieves high precision and 

reliability, reducing the need for resource-intensive experimentation in 

predicting PSS for two-way slabs. Furthermore, the study compares the 

performance of the developed model with that of conventional design codes, 

highlighting the model's superior accuracy. This research contributes to the 

broader application of ML in structural engineering, offering an efficient and 

accurate approach to analyzing and designing structural elements. 

Keywords: Machine Learning; Punching shear strength (PSS), Two-way slab. 

 

 

1. Introduction  

Two-way slabs constitute a prevalent 

structural component widely employed in the 

construction of buildings, owing to their adaptability 

and robust load-bearing capabilities. These slabs 

are pivotal in sustaining diverse structures and 

efficiently disseminating loads in both horizontal 

directions. An essential mechanical attribute 

profoundly impacting the performance of two-way 

slabs relates to their capacity for withstanding 

punching shear forces. It is noteworthy that 

punching shear failures occur abruptly and can 

potentially result in the gradual deterioration of the 

overall structural integrity [1]. Investigating 

punching shear resistance in two-way slabs yields 

critical insights into their structural behavior. 

Analyzing the results, it becomes evident that a 

thorough comprehension of punching shear 

mechanisms is imperative for ensuring the safety 

and stability of building structures. 

Punching shear strength (PSS), a critical 

parameter in the structural analysis of two-way 
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labs, refers to the capacity of the slab to withstand 

concentrated forces around columns or other load-

bearing elements. However, the determination of 

PSS proves to be a challenging task owing to its 

susceptibility to various associated factors. To 

address this challenge, extensive experimental 

research has been undertaken to identify the key 

factors influencing PSS. Notably, studies 

conducted by Elstner and Hognestad [2], Moe [3], 

Mowrer and Vanderbilt [4], Regan [5], and 

Guandalini et al. [6] have been instrumental in this 

regard. These investigations focus on 

understanding the impact of parameters such as 

column size, slab dimensions, concrete 

compressive strength, yield strength of 

reinforcement, reinforcement ratio, and loading 

conditions on the punching shear failure of 

reinforced concrete slabs. In addition to 

illuminating the behavior of reinforced concrete 

slabs under punching shear forces, these testing 

programs furnish invaluable datasets for ongoing 

research endeavors, aiding in developing and 

validating new models. This body of research 

continues to play a crucial role in enhancing our 

comprehension of PSS and advancing structural 

engineering practices. 

Furthermore, numerous design codes, 

including ACI 318-08 [7], BS-8110-97 [8], CEB-FIP-

90 [9], and Euro-Code 2  [10], present empirical 

equations aimed at forecasting the PSS of two-way 

reinforced concrete slabs. Although these 

equations typically offer user-friendly solutions with 

restricted parameters, it is crucial to recognize that 

most of them rely on empirical methodologies 

derived from experimental data during their 

development. As a result, the outcomes generated 

by these equations for the same structural scenario 

often exhibit disparities, and some require 

additional assistance in accurately ascertaining the 

PSS of two-way reinforced concrete slabs. In 

conclusion, while empirical equations found in 

design codes offer practical tools for estimating 

PSS in two-way reinforced concrete slabs, their 

empirical nature leads to variations in results. 

Engineers must exercise caution when utilizing 

these equations and consider the unique 

characteristics of their structural systems. 

Furthermore, there is a pressing need for further 

research to refine and expand our understanding 

of PSS mechanisms, leading to more accurate and 

consistent predictions in structural engineering 

practice. 

In recent decades, artificial intelligence (AI) 

and machine learning (ML) have gained substantial 

prominence and found widespread applications 

across various engineering disciplines [11]-[13]. 

The construction industry, in particular, has 

harnessed ML techniques effectively [14,15]. AI 

models have addressed numerous intricate 

challenges within civil engineering, spanning fields 

like structural engineering [16],[17], materials 

science [18,19], geotechnical engineering [20,21], 

and earth sciences [22,23]. Notably interesting in 

structural design is the prediction of PSS in two-

way flat slabs. In a study conducted by Hoang [24], 

an artificial neural network model and sequential 

partial linear regression were employed to estimate 

the PSS of fiber-reinforced concrete slabs. The 

findings reveal that both models surpass other 

experimental design equations in PSS prediction. 

Elshafey et al. [25] also employed an artificial 

neural network approach to examine the influence 

of concrete strength, steel reinforcement ratio, and 

effective depth of the slab on PSS. However, the 

stability and robustness of the models developed 

in these investigations remain unverified. These 

findings carry significant implications for structural 

engineering practice, as they suggest the potential 

for more accurate and reliable predictions of PSS 

in concrete slabs through AI and ML approaches. 

Nevertheless, rigorous validation and further 

research to enhance model stability remain critical. 

In pursuit of overcoming the constraints 

observed in prior investigations, the primary 

objective of this study is to construct a ML model, 

specifically a Gradient Boosting (GB) model, to 
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predict punching shear resistance in two-way flat 

slabs. This model leverages a dataset of 241 

experimental outcomes from respected scholarly 

journals. This study incorporates cross-validation 

and Monte Carlo simulation techniques to ensure 

robust model assessment and a comprehensive 

grasp of its stability across diverse scenarios. 

2. Database description and analysis 

A dataset consisting of 241 experimental 

observations on the PSS of two-way reinforced 

concrete flat slabs was collected for this research 

from a variety of literature sources [2],[4],[26]-[30]. 

The analysis of these experimental results 

highlights the substantial influence of several 

pivotal factors on the PSS of two-way reinforced 

concrete slabs. These factors encompass the 

thickness of the slab, the width of the column 

section, the effective depth of the slab, the 

reinforcement ratio, the compressive strength of 

concrete, and the yield strength of reinforcement. 

Consequently, these identified factors serve as the 

basis for developing ML models to predict the PSS 

of two-way reinforced concrete slabs. 

The dataset encompasses a range of values 

for each parameter: slab thickness (h) ranging from 

46.0 to 550.0 mm, width of column section (C) 

ranging from 80.0 to 520.0 mm, effective depth of 

slab (d) ranging from 35.0 to 500.0 mm, 

reinforcement ratio (rho) ranging from 0.25 to 

5.01%, compressive strength of concrete (fc) 

ranging from 12.3 to 119.0 MPa, and yield strength 

of steel (fy) ranging from 294.0 to 720.0 MPa. The 

test specimens include square and circular 

columns, excluding those cast with lightweight 

concrete. They consist of reinforced concrete flat 

slab-column connections without drop panels, 

column capitals, or shear reinforcement. 

Table 1 presents the statistical parameters 

summarizing the characteristics of the variables in 

the database, and the distribution of each 

parameter is illustrated in Fig. 1. Furthermore, the 

correlation matrix plot in Fig. 2 showcases the 

relationship between PSS and the six input 

parameters. This plot visually represents the 

pairwise correlations between parameters, each 

associated with its corresponding correlation 

coefficient. It is evident that parameters such as h, 

C, d, and fc exhibit a high correlation with PSS, 

while parameters rho and fy demonstrate a lower 

correlation with PSS. 

Table 1. The input and output parameters used in the development of ML models 

Parameter Symbol Unit Mean Std Min Median Max 

Input 

Slab thickness h mm 149.93 79.64 46.00 150.00 550.00 

Width of the column 

section 
C mm 198.54 78.13 80.00 200.00 520.00 

Effective depth of 

the slab 
d mm 121.09 70.43 35.00 114.00 500.00 

Reinforcement ratio rho % 1.23 0.77 0.25 1.06 5.01 

Compressive 

strength of concrete 

fc MPa 40.70 22.75 12.30 31.50 119.00 

Yield strength of 

steel 
fy MPa 478.39 97.34 294.00 480.00 720.00 

Output 

Punching shear 

strength 
PSS kN 452.92 495.80 29.00 312.00 2681.00 
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Fig. 1. Distribution of input and output parameters of the PSS data set 
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Fig. 2. Correlation matrix between input and output parameters of the PSS data set 

Subsequently, the database is partitioned 

into two subsets: training and testing parts. The 

former serves as the platform for constructing and 

optimizing the ML model, while the latter functions 

as the arena for assessing the model's 

performance. As conventionally practiced, a 70% 

allocation to the training set and a 30% allocation 

to the testing set is adhered to [31]. 

3. Methods 

3.1. Machine learning methods 

3.1.1. Gradient Boosting (GB) method 

GB [32] is a powerful and versatile ML 

technique that has gained prominence for its 

effectiveness in predictive modeling and 

regression analysis. It belongs to the ensemble 

learning family of algorithms, where multiple weak 

learners (often simple decision trees) are 

combined to create a robust and accurate 

predictive model. 

The fundamental idea behind GB is to 

iteratively build a series of weak models, each 

correcting the errors of its predecessor. This is 

achieved by assigning weights to the data points 

based on the errors made by the previous models. 

The algorithm aims to optimize a loss function, 

gradually reducing the residuals and improving the 

overall predictive accuracy. It is widely used in 

various applications, including regression, 

classification, and ranking tasks, and has proven to 

be highly effective in producing accurate and 

robust predictions. 

3.1.2. Optimization techniques 

a. Grid Search Optimization 

Grid Search Optimization is a systematic and 

exhaustive hyperparameter tuning technique 

widely used in ML to find a model's optimal set of 

hyperparameters. Hyperparameters are external 

configurations not learned from the data but 

influence the learning process. They include 

parameters like learning rate, regularization 

strength, or the number of hidden layers in a neural 

network. 

The Grid Search Optimization technique 

defines a grid of hyperparameter values to be 

explored. The model is trained and evaluated using 

a chosen performance metric for each combination 

of hyperparameter values in the grid. The 

combination of hyperparameters that yields the 
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best performance according to the metric is then 

selected as the optimal configuration. While Grid 

Search Optimization ensures a thorough 

exploration of the hyperparameter space, it can be 

computationally expensive, particularly with 

numerous hyperparameters or a broad range of 

values. Nonetheless, it remains a fundamental and 

widely used technique, providing a robust 

approach to hyperparameter tuning and enhancing 

model performance across various domains and 

algorithms. 

b. Random Search Optimization 

Random Search Optimization is an ML 

hyperparameter tuning technique that deviates 

from the systematic approach of Grid Search. In 

contrast to the exhaustive exploration of all 

possible combinations, Random Search selects 

hyperparameter configurations by random 

sampling within predefined search space ranges or 

distributions. This method aims to efficiently 

discover effective hyperparameter settings while 

requiring fewer computational resources than Grid 

Search. 

In Random Search, each set of 

hyperparameter values is randomly chosen and 

used to train and evaluate a model. Like Grid 

Search, this process involves fitting the model to 

the training data, validating on a separate dataset, 

and assessing performance using a designated 

metric. The randomness in selecting 

hyperparameter configurations allows Random 

Search to explore the hyperparameter space 

efficiently, potentially identifying effective 

configurations more swiftly than exhaustive search 

methods. 

One of the advantages of Random Search is 

its resource efficiency, as it does not require 

evaluating every possible combination. This makes 

it particularly beneficial in situations where 

computational resources are limited. Although 

Random Search does not guarantee finding the 

absolute optimal configuration, it has demonstrated 

practical effectiveness, especially in scenarios with 

large and complex search spaces. 

3.2. Performance indices of models 

In this study, the estimating results of the GB 

model are assessed using commonly employed 

statistical criteria, specifically, the root mean 

square error (RMSE), the mean absolute error 

(MAE), and the coefficient of determination (R2). 

These criteria are pivotal in regression analysis, 

elucidating the relationship between predicted 

output and actual values in various ways. A higher 

R2 value indicates a strong correlation, whereas 

lower values of RMSE and MAE signify better 

model performance. The following formulas 

determine these criteria: 
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k k
k 1
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RMSE p q

N =
=  −  (1) 

N

k k
k 1
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N =
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2
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kk 1 k

p q
R 1

p p

=

=

 
 − = −
 
 −  

 (3) 

where N is the number of database, q is the 

predicted value and p is the actual value. 

4. Results and Discussion 

4.1. Hypeparameter tuning 

Hyperparameter optimization stands as a 

pivotal undertaking in the construction of ML 

models, serving the purpose of pinpointing the 

most favorable hyperparameter values to enhance 

the model's predictive capabilities on a given 

dataset. ML models undergoing hyperparameter 

optimization often exhibit heightened accuracy and 

robustness, surpassing those without such fine-

tuning. Within the scope of this study, two distinct 

techniques, namely grid search (Grid.S) and 

random search (Ran.S), are employed to fine-tune 

the hyperparameters of the GB model. Four 

particularly influential hyperparameters, as 

outlined by reference [33], are selected for 

optimization: 

• Learning rate (L.R): This hyperparameter 

governs the magnitude of steps taken 
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during the optimization procedure, dictating 

the size of the value incorporated into the 

model at each step to enhance predictive 

quality. 

• Max depth (M.D): M.D regulates the 

maximum depth attainable by decision 

trees within the model. 

• n_estimator (Ne): Ne plays a pivotal role in 

determining the quantity of decision trees 

generated within the model. 

• min_samples_leaf (M.S.L): M.S.L 

establishes the minimum count of data 

points obligatory within each decision tree 

leaf. 

In-depth exploration and fine-tuning of these 

influential hyperparameters enhance the capacity 

to harness ML techniques effectively in solving 

complex problems across various domains. The 

hyperparameter search space is defined based on 

suggestions from previous research [34–36] and 

initial experiments, and presented in Table 2. The 

remaining hyperparameters of the GB model 

adhere to the default Python settings in this study. 

Hyperparameter tuning and model assessment are 

conducted utilizing a five-fold cross-validated 

dataset to augment the correlation between 

experimental and predicted outcomes. The 

coefficient of determination is adopted to gauge 

model performance during optimization. 

In adherence to the grid search methodology, 

a systematic amalgamation of 1200 

hyperparameter sets yields an equivalent number 

of corresponding GB models. In parallel, the 

random search strategy conducts 900 searches to 

ascertain the most fitting hyperparameter set, 

mirroring the outcomes derived from the grid 

search. The evaluation entails a comprehensive 

examination of model performance, encompassing 

factors such as predictive accuracy, stability, and 

alignment with experimental data. This rigorous 

assessment leads to the identification of the top 10 

GB models, collectively representing the most 

adept and refined configurations. Notably, the 

performance evaluation is based on the R2 

criterion, with the outcomes meticulously arranged 

in descending order and presented in Table 3. The 

results of this hyperparameter optimization process 

bear significance in ML as they lay the groundwork 

for selecting the most adept GB models. These 

optimized models, guided by refined 

hyperparameters, offer enhanced predictive 

capabilities and exhibit superior alignment with 

experimental data. 

Fig. 3 provides a visual representation of the 

R2 values and the average runtime associated with 

the top 10 models that have undergone 

hyperparameter optimization using grid and 

random search techniques. Concurrently, Table 3 

offers insights into the overall runtime for both 

optimization methods. Notably, within the 

framework of random search, which involves 900 

systematic inquiries, the optimal hyperparameter 

set is successfully identified. This achievement 

aligns closely with the outcomes derived from grid 

search but stands out for its notably reduced 

runtime. However, it is important to acknowledge 

that determining the precise number of searches 

necessitates empirical experimentation and hinges 

upon the specific hyperparameter configuration. 

The exploration of diverse optimization techniques, 

as exemplified by Model 1 (GB_01), showcases its 

potential to yield robust predictive results for PSS 

of two-way slabs. 

4.2. Prediction results of PSS of two-way slab 

according to the best GB model 

To ascertain the robustness and applicability 

of the GB_01 models, a Monte Carlo simulation 

(MCS) technique is harnessed. This method 

generates multiple distinct training and testing 

datasets, thereby ensuring the model's reliability 

and generalizability. The convergence values, 

denoting the model's stability and generalization, 

are observed over a series of Monte Carlo 

simulations conducted within a predefined range 

around the average convergence values. It is worth 

highlighting that an increase in the number of 
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Monte Carlo simulations correlates with an 

extended convergence rate for the models, leading 

to elongated training durations and heightened 

problem complexity. The utilization of the Monte 

Carlo simulation technique plays a pivotal role in 

affirming the reliability and versatility of the GB_01 

models. These models are not merely designed to 

perform well on specific datasets but are 

engineered to exhibit robust performance across 

various scenarios and datasets. 

Two evaluation criteria, namely R2 and 

RMSE, play a crucial role in gauging the influence 

of the number of Monte Carlo simulations (MCS) 

on the convergence results. Fig. 4 visually 

represents the normalized convergence outcomes 

for R2 and RMSE concerning training and testing 

datasets. In this graphical representation, the 

horizontal axis signifies the count of MCS, while the 

vertical axis depicts the normalized convergence 

values related to the evaluation criteria. Notably, for 

the R2 criterion, the validation dataset requires a 

minimum of 130 MCS to attain a convergence 

range of ±0.03% around the average value. In 

contrast, the training dataset reaches this range 

within ±0.01% around the average value after the 

initial simulation. Regarding the RMSE criterion, 

the training dataset achieves convergence within 

±0.1% of the range following the first simulation, 

while the validation dataset necessitates 

approximately 106 MCS to reach the convergence 

limit of ±0.5%. These findings advocate the 

recommendation of employing 200 MCS to ensure 

the assessment of model convergence, thereby 

validating the reliability of predictions generated by 

the GB model and confirming its generalizability. 

The significance of these results resides in their 

capacity to ensure the performance and 

generalizability of the GB model across diverse 

datasets. 

This section presents a typical prediction 

outcome generated by the GB model across 200 

simulations. Regression plots for both the training 

and testing segments are showcased in Fig. 5, with 

the horizontal axis denoting experimental values 

and the vertical axis representing predicted output 

values. These plots reveal the presence of robust 

linear regression lines between experimental and 

predicted values, yielding notably high R2 values of 

0.998 and 0.988 for the training and testing 

segments, respectively. These metrics validate the 

model's precision and reliability in effectively 

capturing the intricate relationship between input 

parameters and the PSS. 

A comprehensive assessment of 

performance metrics, encompassing RMSE and 

MAE, reinforces the model's accuracy, with low 

error values of 24.995 kN and 3.425 kN observed 

for the training part, and 32.615 kN and 24.230 kN 

for the testing part, respectively. The model 

consistently exhibits exemplary performance 

across these diverse metrics, further underscoring 

its robustness and aptitude for predicting the PSS 

of two-way slabs. Moreover, Fig. 6a and 6b present 

charts and cumulative error distributions between 

predicted and experimental PSS values for both 

datasets, offering a holistic view of the model's 

predictive capabilities. Additionally, Table 4 

provides quantitative values for the model's 

performance evaluation criteria. It becomes 

evident that the application of the GB_01 model to 

predict the PSS of two-way slabs attains an 

elevated level of accuracy, thereby mitigating the 

need for extensive experimental efforts and 

preserving valuable resources. 

The paramount importance of these results 

lies in their collective affirmation of the GB_01 

model's reliability and precision in predicting PSS. 

The model's capability to consistently produce 

accurate predictions across various evaluation 

metrics signifies its potential as a valuable tool for 

structural engineers and researchers in two-way 

slab design and analysis. 

4.3. Comparison with design codes 

In this section, the predictive performance of 

the GB_01 model is assessed in comparison to 

established standards used to determine the PSS 
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of two-way slabs. Four standard codes are 

provided for comparison purposes, including ACI 

318-08 [7], CEB-FIP-90 [9], BS 8110-97 [8], and 

EC 2 [10]. Table 5 presents a detailed overview of 

the equations derived from the selected design 

codes for predicting PSS in two-way slabs. The 

comparative analysis highlights the alignment and 

variations between the predictions generated by 

the GB_01 model and those obtained from the 

established standards. 

Table 6 presents the comparative results 

considering three previously defined metrics. The 

findings reveal that ACI 318-08 exhibits the least 

accuracy among the design codes examined when 

applied to the collected dataset. This is evident 

through the RMSE of 193.4 kN, MAE of 118.9 kN, 

and an R2 value of 0.928. Conversely, CEB-FIP-90, 

BS 8110-97, and EC2 demonstrate greater 

accuracy in predicting PSS than ACI, with RMSE 

values ranging from 80 to 88 kN, MAE values from 

44 to 56 kN, and R2 values hovering around 0.98. 

Notably, the employment of the AI-based GB model 

showcases remarkable accuracy, with an RMSE of 

27.5 kN, MAE of 9.7 kN, and an impressive R2 of 

0.99. 

These results underline the substantial 

disparities in predictive accuracy between the 

different design codes. ACI falls short in providing 

accurate PSS predictions, with relatively higher 

errors than CEB-FIP, BS, and EC2. The superior 

performance of the GB model highlights the 

potential of artificial intelligence in enhancing the 

precision of PSS predictions. This advances 

structural engineering practices and underscores 

the critical role of ML models in augmenting the 

reliability of design processes and ensuring the 

safety of construction projects. Further exploration 

and validation of AI models like the GB model hold 

significant promise for future structural engineering 

applications. 

4.4. Parametric study 

A parametric study is presently undertaken to 

assess input variations' impact and influence on 

PSS. In this study, the baseline input considered is 

the slab thickness, with an examination of slab 

thickness in conjunction with other pertinent input 

factors. The results of this analysis are visually 

represented in Fig. 7. It serves as a graphical 

representation of the outcomes obtained from the 

parametric study. It provides a visual insight into 

the influence of varying input parameters, with a 

specific focus on slab thickness, on the PSS of the 

structural elements under consideration. 

In examining the variation in parameter C, 

ranging from 80 to 520 mm, it is observed that PSS 

exhibits a broad spectrum, spanning from 250 to 

1220 mm. Nevertheless, the overall trend remains 

relatively constrained, with minimal alterations for 

fixed values of h. When considering the range of h 

from 20 to 170, a gradual shift in PSS is discernible, 

progressing from 250 to 400. A notable escalation 

in PSS becomes evident when h is extended from 

170 to 370, resulting in a PSS increase from 400 to 

1150. Beyond the threshold h value of 370, PSS 

stabilizes and shows only slight variations around 

1200. These observations reaffirm the significance 

of h as a substantial input parameter in the context 

of PSS, with its variations eliciting notable changes 

in structural response. The findings underscore the 

importance of considering h as a critical factor in 

the design and assessment of structural elements, 

as it significantly influences PSS and, 

consequently, the overall structural integrity. 

The fluctuation in parameter d exhibits a 

similarity to the influence of C concerning its impact 

on PSS. As d undergoes variation within the range 

of 35 to 500 mm, PSS exhibits considerable 

fluctuations, ranging from 100 to 2500. However, 

it's worth noting that these variations are primarily 

driven by the influence of h. Specifically, when d 

assumes a smaller value, such as d=35 mm, PSS 

demonstrates a notably higher magnitude than the 

increased values of d. Conversely, an increment in 

d from 79 to 500 mm has a relatively minimal 

impact on PSS. The patterns of PSS changes in 

this scenario closely resemble those observed for 
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variable C, with two noteworthy thresholds 

identified at approximately 170 and 370 mm. 

A similar parametric investigation extends to 

the parameters rho, fc, and fy, encompassing a 

comprehensive examination of their effects on 

PSS. Remarkably, a consistent pattern emerges 

across all cases, revealing the presence of two 

pivotal thresholds at approximately 170 and 370 

mm for h. When considering rho, with a range from 

0.25 to 5.01, PSS exhibits changes ranging from 

200 to 1500 kN. A parallel analysis of fc within the 

12.3 to 19 MPa range demonstrates PSS 

fluctuations ranging from 180 to 1500 kN. In 

contrast, varying fy from 294 MPa to 720 MPa 

results in PSS changes from 150 to 1300 kN. 

Notably, the influence of fy is comparatively modest 

when juxtaposed with fc. Conversely, the variation 

in rho yields limited changes in PSS, as for any 

given rho value, PSS varies by only 200 kN. 

However, it is essential to acknowledge that higher 

values of h can induce more substantial PSS 

fluctuations, with variations in rho potentially 

resulting in changes of approximately 500 kN. 

These findings emphasize the intricate 

interplay between structural parameters rho, fc, fy, 

and h, further corroborating the significance of h as 

a critical governing factor in PSS. Establishing 

consistent thresholds at 170 and 370 mm for h 

underscores the importance of these values in 

optimizing structural performance. The insights 

gained from this comprehensive parametric study 

provide structural engineers with valuable 

guidance for enhancing the precision and reliability 

of structural design practices. Additionally, 

recognizing the varying degrees of influence 

exerted by rho, fc, and fy on PSS offers valuable 

information for tailoring structural designs to meet 

specific performance requirements. 

Table 2. Search domain and default values of hyperparameters in the GB model 

n_estimators (N.S) Learning rate (L.R) Max depth (M.D) min_samples_leaf (M.S.L) 

100-1000 0.1-0.5 3-8 1-4 

loss subsample criterion min_samples_split 

squared_error 1 friedman_mse 2 

Table 3. Optimal hyperparameters of GB models 

Hyper 

parameter 
L.R M.D M.S.L Ne R2

cv L.R M.D M.S.L Ne R2
cv 

Optimization 

techniques 

Grid search CV 

(Grid.S) 

Random search CV 

(Random.S) 

GB_01 0.1 5 3 200 0.981327 0.1 5 3 200 0.981327 

GB_02 0.1 5 3 300 0.980792 0.1 6 3 200 0.980699 

GB_03 0.1 6 3 200 0.980699 0.1 5 3 400 0.980666 

GB_04 0.1 5 3 400 0.980666 0.1 8 3 200 0.980035 

GB_05 0.1 5 3 500 0.980587 0.1 5 3 900 0.980541 

GB_06 0.1 5 3 600 0.980573 0.1 5 3 1000 0.980471 

GB_07 0.1 5 3 700 0.980546 0.1 4 3 200 0.980429 

GB_08 0.1 8 3 200 0.980541 0.1 6 3 200 0.980300 

GB_09 0.1 5 3 800 0.980510 0.1 8 3 100 0.980268 

GB_10 0.1 5 3 900 0.980471 0.1 8 1 300 0.980255 

Total run time (s) 1842.818 713.710 
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Fig. 3. Box plot represents the R2 criterion value and average running time of the 10 best model 

  

Fig. 4. Evaluate the convergence level of the GB model according to R2 and RMSE criteria 

  

Fig. 5. Correlation analysis between actual and predicted values (a) train part and (b) test part 

  

Fig. 6. Error between PSS prediction results and the actual values (a) train part, (b) test part 
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Table 4. Values of statistical criteria describing GB_01 model performance 

 RMSE (kN) MAE (kN) R2 

Train part 24.995 3.424 0.998 

Test part 32.615 24.230 0.988 

All data 27.527 9.727 0.997 

Table 5. Equations of standard codes 

Models Equation 

ACI 318-08 [7] ( )n n1 n2 n3

n1 c 0

c

n2 s c 0

0

n3 c 0

V min V ,V ,V

4
V 0.083 2 f b d,

d
V 0.083 2 f b d,

b

V 0.33 f b d

=

 
= +  

 

 
= +   

 

= 

 

where 

b0: the perimeter of the critical section (mm), 

d: the effective depth of the slab (mm), 

c: the ratio of the longer to the shorter dimension of the loaded area, 

fc: the cylinder compressive strength of concrete (MPa), 

 = 1, s = 40 

CEB-FIP-90 [9] 

 

3
n 0 ckV 0.18b d 100 f=     

1 200 d = +  

where  

fck: the characteristic cylinder compressive strength (MPa),  

: the ratio of flexure reinforcement. 

BS 8110-97 [8] 

 
03 4 3

n cu

b d
V 0.79 100 400 d f 25

1.25
=      

where fcu: the cubic compressive strength (MPa). 

EC 2 [10] 
( )

1/3 3/2 1/2
u 0 ck ck 0

c crt crt

0.18 2d 2d
V Kb d 100 f 0.035K f b d

a a
=  


 

where: 

c = 1.5, K 1 200 d 2= +   

acrt: the distance from column face to the control perimeter 

Table 6. Statistical criteria values of design codes in predicting the PSS of two-way slabs 

Models 
Criteria 

RMSE (kN) MAE (kN) R2 

ACI 318-08 [7] 193.445 118.940 0.928 

CEB-FIP-90 [9] 80.823 44.893 0.988 

BS 8110-97 [8] 81.725 45.634 0.987 

EC 2 [10] 88.493 56.140 0.986 

This study 27.527 9.727 0.997 
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Fig. 7. Parametric study for PSS considering the slab thickness and other input parameters: (a) width of 

column, (b) effective depth of column, (c) reinforcement ratio, (d) compressive strength of concrete, and 

(e) yield strength of steel 

5. Conclusion 

In conclusion, this study harnesses ML, 

specifically a GB model, to predict the PSS of two-

way reinforced concrete flat slabs. The research 

showcases the model's remarkable accuracy in 

capturing the intricate relationships between input 



JSTT 2024, 4 (1), 42-57                                                Lam et al 

 

 
55 

parameters and PSS. Key findings include R2 

values of 0.998 and 0.988 for the training and 

testing segments, respectively, alongside low error 

values (RMSE and MAE) for both parts. These 

metrics affirm the GB model's precision, reliability, 

and robustness in predicting PSS, thus reducing 

the need for resource-intensive experimental 

endeavors. 

While this research represents a significant 

advancement in structural engineering and ML, 

several avenues for future exploration emerge. 

First, expanding the dataset to include a wider 

range of parameters and structural variations could 

enhance the model's versatility and 

generalizability. Exploring advanced ML 

techniques and ensembles may also lead to even 

more accurate predictions. Lastly, investigating 

real-time monitoring and sensor data integration 

into the model for ongoing structural assessment 

and safety analysis is an exciting prospect. These 

future endeavors hold the potential to revolutionize 

the field of structural analysis and design, offering 

efficient and accurate tools for engineers and 

researchers. 
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