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Abstract: In this study, we aim to delineate landslide susceptibility zones within 

Dien Bien province, Vietnam, leveraging the capabilities of various machine 

learning models including Light Gradient Boosting Machine (LGBM), K-Nearest 

Neighbors (KNN), and Gradient Boosting (GB). Harnessing a dataset 

comprising 665 data points and encompassing 14 influential factors such as 

slope, aspect, curvature, elevation, geological composition, Normalized 

Difference Vegetation Index (NDVI), and proximity to geological features like 

faults, rivers, and roads, a comprehensive database for landslide modeling was 

constructed. The analysis entailed rigorous evaluation and comparison of 

model accuracy employing established statistical metrics, notably Receiver 

Operating Characteristic (ROC) curves and Area Under the Curve (AUC). 

The findings underscore the efficacy of the Light Gradient Boosting Machine 

model, exhibiting superior performance with an AUC score of 0.85, surpassing 

both the Gradient Boosting model (AUC = 0.81) and the K-Nearest Neighbors 

model (AUC = 0.79). Notably, the Light Gradient Boosting Machine model 

emerges as a promising tool for precise landslide prediction within the study 

area, offering significant potential for the creation of a robust landslide 

susceptibility map. The resulting spatial forecast map for Dien Bien province 

holds considerable utility for informing land use planning initiatives aimed at 

mitigating the impact of landslide disasters in the region.  

Moreover, the application of SHAP (Shapley Additive explanation) values to 

quantify the contribution of each factor to landslide susceptibility prediction, 

offering novel insights into model interpretation and feature importance. The 

resulting spatial forecast map holds significant implications for land use 

planning and disaster mitigation efforts in Dien Bien province, showcasing the 

potential of advanced machine learning techniques in enhancing landslide risk 

management strategies. 
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1. Introduction 

Landslides pose significant threats as natural 

disasters, particularly in mountainous regions [1], 

where their occurrence can result in substantial 

damage to both natural landscapes and built 

environments, often leading to loss of life and 
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substantial economic repercussions [1]-[3]. 

Consequently, identifying areas prone to landslides 

becomes paramount for effective disaster 

prevention and management. Landslide 

susceptibility mapping (LSM) offers a means to 

gauge the likelihood of landslide occurrence within 

a given area under specific geo-environmental 

conditions [4], thereby furnishing decision-makers 

with valuable insights to preempt and mitigate 

landslide events.
 

 

Fig 1. Flow chart of different stages of the present study 

Advancements in geographic information 

systems (GIS) and remote sensing have ushered 

in a plethora of methodologies for LSM [5], broadly 

categorized into qualitative and quantitative 

approaches. Qualitative methods rely heavily on 

expert knowledge and historical data, such as 

analytic hierarchy processes and weighted linear 

combinations [6],[7]. While straightforward to 

implement, qualitative methods are susceptible to 

subjective biases. In contrast, quantitative 

methods, encompassing deterministic and data-

driven models, play a pivotal role in LSM. 

Deterministic models, rooted in physical principles, 

offer precise estimations but demand extensive 

geotechnical and hydrogeological data, often 

impractical for large-scale applications [8]-[10]. 

In recent years, statistical models leveraging 

machine learning have gained prominence [10], 

offering robust solutions to landslide hazard 

mapping. Traditional statistical techniques, 

including weight of evidence and logistic 

regression, while simple, struggle to capture 

intricate relationships between landslide dynamics 

and influencing factors [11]. Machine learning 

algorithms, renowned for their adeptness in 

handling nonlinear relationships, have emerged as 
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formidable tools for LSM [12],[13], spawning a 

myriad of approaches such as support vector 

machines, k-nearest neighbors, gradient boosting, 

decision trees, and deep learning neural networks 

[14],[15]. 

This study aims to elucidate and compare the 

performance of various models employed in 

landslide susceptibility mapping. Specifically, the 

efficacy of three models—LGBM, GB, and KNN—

is explored through empirical research conducted 

in Dien Bien province, Vietnam, to generate 

accurate LSM maps. Leveraging techniques like 

ROC curve analysis and quantitative evaluation 

metrics, assessment and comparison of 

forecasting accuracy are conducted. Validation and 

comparison of model performance are based on 

relative operating characteristics, sensitivity, 

specificity, and overall accuracy metrics. 

2. Materials and methods 

In this study, to forecast landslide zoning in 

Dien Biên Province, Vietnam, the following four 

main steps were employed:  

(i) Collecting landslide-sensitive points of the 

study area that have occurred in the past and 

identification and preparation of layers of effective 

factors on the occurrence of landslides in the study 

area, 

(ii) Landslide sensitive zoning using machine 

learning algorithms. 

(iii) Evaluating and selecting the most reliable 

landslide susceptibility map using evaluation 

criteria such as AUC/ROC and statistical indexes. 

(iv) Select the most reliable landslide 

susceptibility map based on the model’s study. 

3. Methods used 

3.1. LGBM Classifier 

In this study, the light gradient boosting 

machine (LGBM) algorithm was used to build a 

landslide susceptibility model. LGBM is a machine 

learning algorithm based on gradient boosting 

decision trees (GBDT). LGBM's scalability and 

parallel computing enable it to process large-scale 

data sets with a relatively small memory footprint 

[16]. This feature makes LGBM particularly suitable 

for landslide susceptibility studies, as studies often 

involve large amounts of remote sensing data and 

environmental variables. Compared to algorithms 

such as: RF, SVM and GBDT, LGBM uses a graph-

based decision tree algorithm instead of the 

traditional binary decision tree, which reduces the 

possibility of overfitting the model. Additionally, 

LGBM supports L1 and L2 regularization and 

adopts a leaf growth strategy, which can limit model 

complexity and reduce the risk of overfitting while 

maintaining accuracy of the model [17]. The 

equation of LGBM aims to minimize the loss 

function, which is usually expressed by the 

following Equation 1: 

(y,F)=∑l(yi, F(xi))+∑Ω(ft) (1) 

where l(yi,F(xi)) represents the loss function, 

measuring the discrepancy between the predicted 

value F(xi) and the actual value yi. Ω(ft) denotes 

the regularization term used to restrict model 

complexity and prevent overfitting. The summation 

symbol (∑) indicates the summation of all data 

samples or base learners. 

3.2. Gradient Boosting    

Gradient boosting (GB) is one of the typical 

artificial intelligence methods used to develop 

classification and regression models to optimize 

the model learning process to solve non-linear 

problems [18]. GB is more widely known as 

decision trees or regression trees. The GB is 

trained and built by adding new learners in a 

gradual sequential manner thereby grouping weak 

prediction models, i.e., decision trees, through the 

nodes and leaves of the decision tree, and the final 

prediction result is determined based on the 

decision nodes [19]. Individual decision trees are 

weak models, but when viewed as a set (GB), their 

accuracy is much improved [20]. Therefore, the 

populations are built gradually in an incremental 

manner such that every population corrects errors 

in the previous population, thereby improving the 

accuracy during model training. 

3.3. Kneighbors Classifier 



JSTT 2024, 4 (1), 23-41                                                    Prakash et al 

 

 
26 

The K-nearest neighbor (KNN) algorithm is a 

supervised learning algorithm utilized for 

classification and expectation. It works based on 

the nearness guideline , which recommends that 

information focuses with comparative highlights 

are near to each other [21]. The KNN calculation 

allots a course to a point based on the closest 

neighbors in its classification setup. It calculates 

the separate between the target point and its 

closest neighbors to decide the course task 

utilizing remove measurements such as the 

Euclidean or Manhattan remove. By considering 

the chosen number of neighbors (K), it chooses the 

lesson with the most elevated number of votes 

from these neighbors. The KNN calculation utilizes 

a subordinate thickness approach and a decision 

run the show to gather comparative pixels within 

the include space [22]. This implies that pixels 

located nearby in this space are considered part of 

the same class. This model finds applications in 

different areas such as design acknowledgment, 

picture preparing, and information investigation. It 

empowers the classification or expectation of 

information focuses based on the characteristics of 

their closest neighbors, leveraging the concepts of 

nearness and closeness [23]. 

3.4. Validation methods 

3.4.1. Receiver operating characteristic curve 

(ROC) 

The receiver operating characteristic curve 

(ROC) is a common method used to evaluate the 

performance of binary classification models [24]. 

The ROC bend visualizes the classifier s 

expectation comes about by plotting the genuine 

positive rate TP on the vertical pivot and the untrue 

positive rate FP on the flat pivot. When assessing 

the execution of avalanche vulnerability 

expectation, the ROC bend can be utilized to 

survey the classification capacity of the 

demonstrate for avalanche and non landslide tests 

[25]. Using landslide samples as positive examples 

and non-landslide samples as negative examples, 

the TP and FP values are calculated at different 

thresholds based on the model's predictions, and 

the ROC curve is then constructed. The closer the 

ROC's distance to the top left corner, the more 

effective the model is at predicting. The quality of 

the model can be determined by measuring the 

area under the ROC curve (AUC), which has a 

range of [0, 1]. The closer the AUC value is to 1, 

the more accurate the model's predictions are. 

When the AUC value is greater than 0.8, it 

suggests that the model has a superior capacity to 

differentiate between landslide and non-landslide 

samples, and it can accurately predict and 

categorize the susceptibility of landslides [26]. The 

calculation is as the following Equation 2: 

AUC=
( ∑ TP+ ∑ TN )

(P+N)
 (2) 

where, TP is the number of landslides that is 

correctly classified, TN is the number of incorrectly 

classified landslides, P is the total number of 

landslides and N is the total number of non-

landslides. 

3.4.2. Statistical Indexes  

In this study, we employed a variety of 

metrics to assess the performance of models 

during both the training and validation phases. 

These metrics encompassed true positives (TP), 

true negatives (TN), false positives (FP), false 

negatives (FN), positive predictive value (PPV), 

negative predictive value (NPV), sensitivity or true 

positive rate (SST), specificity or true negative rate 

(SPF), accuracy (ACC), Kappa, root mean square 

error (RMSE). Below, we will briefly explain each 

metric. 

Positive Predictive Value (PPV): Also known 

as precision, it is the percentage of positive 

predictions that are actually positive. 

Negative Predictive Value (NPV): It is the 

percentage of negative predictions that are actually 

negative.  

Sensitivity (SST): Also known as recall or true 

positive rate, it is the percentage of actual positive 

instances that are correctly predicted. 

Specificity (SPF): Also known as true 
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negative rate, it is the percentage of actual 

negative instances that are correctly predicted. 

Accuracy (ACC): It is the percentage of total 

instances that are correctly predicted. It is 

calculated as: 

PPV= 
TP

TP+FP
 (3) 

NPV= 
TN

TN+FN
 (4) 

SST= 
TP

TP+FN
 (5) 

SPF= 
TN

TN+FP
 (6) 

ACC= 
TP+TN

TP+TN+FP+FN
 (7) 

Where TP (True Positive) and TN (True 

Negative) are the numbers of correctly classified 

landslides, FP (false positive) and FN (False 

negative) are the numbers of landslides incorrectly 

classified. 

Kappa (K): It is a statistical measure that 

calculates the agreement of prediction with the 

actual outcomes, taking into account the possibility 

of agreement occurring by chance. 

Kappa=
Po-Pe

1-Pe

 (8) 

where Po is the relative observed agreement 

among raters (identical to accuracy), and Pe is the 

hypothetical probability of chance agreement. 

A set of quantitative analysis including mean 

absolute error (MAE), root mean square error 

(RMSE), were estimated to measure the accuracy 

of the landslide susceptibility models. The following 

formulas are accepted for these statistical 

measures [27]: 

RMSE=√
1

n
 ∑ (Xpred-Xact)²

n

i=1

 (9) 

MAE=
1

n
∑ |Xpred-Xact|

n

i=1

 (10) 

where Xpred is the observed value, Xact is 

the predicted value, and n is the number of 

observations. 

3.4.3. SHAP 

The core idea of SHAP (Shapley Additive 

exPlanation) is derived from the cooperative game 

theory, which was proposed by Lundberg and Lee 

[28], in order to quantify the contribution of players 

to collaborative games in the early stage [29]. The 

framework SHAP combines multiple existing 

approaches in order to create a theoretically sound 

and intuitive way to interpreting the predictions of 

any machine learning model. It has been a 

significant advancement in the field of machine 

learning model interpretation. The SHAP value 

determines the magnitude and orientation (positive 

or negative) of the influence of features on the 

prediction. 

This study uses SHAP values to quantify the 

contribution of each factor to landslide 

susceptibility prediction results. SHAP interprets 

the Shapley value as an additive method of feature 

mapping, interpreting the model's predicted value 

as the sum of the attribute values of each input 

feature [28]: 

g(x´)= ɸ₀+ ∑ ɸᵢ

i=1

m

 (11) 

where g(x’) is the value of the model, and ϕ0 is the 

constant that explains the model, that is, the 

predicted mean of all training samples. 

Φi is the value of each attribute (Shapley value) as

sociated with it. 

4. Data used 

4.1. Study area  

Dien Bien is a mountainous border province 

in the Northwest region of the country, with 

geographical coordinates 20o54' - 22o33' North 

latitude and 102o10' - 103o36' East longitude. 

Located 504 km west of Hanoi capital, the east and 

northeast borders Son La province, the north 

borders Lai Chau province, the northwest borders 

Yunnan province (China), the west and southwest 

borders Lao. The area, tectonically active and 

dissected by shears and geological faults, exhibits 

a complex terrain in Dien Bien City, dominated by 
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steep, rugged, and serrated mountains. The region 

comprises mountains aligned in a northwest-

southeast direction, with elevations varying from 

200 meters to over 1,800 meters. The terrain 

gradually slopes from north to south and from west 

to east. In the North, there are high points of 1.085 

m, 1.162 m and 1.856 m (Muong Nhe district), the 

highest is Pu Den Dinh peak at 1.886 m. In the 

West, there are high points of 1.127 m, 1.649 m, 

1.860 m and the Muong Phang high point range 

extending down to Tuan Giao. The region features 

towering mountains interspersed with narrow, 

steep valleys, rivers, and streams. Notably, the 

Muong Thanh valley, spanning over 150 square 

kilometers, stands out as the largest and most 

renowned expanse in the province and the entire 

Northwest region. The mountains exhibit significant 

erosion, giving rise to large plateaus such as the A 

Pa Chai plateau (Muong Nhe) and the Ta Phinh 

plateau (Tua Chua). Additionally, various terrain 

types including valleys, rivers, streams, alluvial 

terraces, volcanic cones, slopes, and caverns are 

widely dispersed throughout the area, albeit 

occupying relatively small portions. 
 

 

Fig 2. Location of the landslide study area 

4.2. Landside inventory 

The landslide inventory plays a pivotal role in 

the assessment of landslide susceptibility, serving 

as a comprehensive record of historical landslides 
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within the research area [30]. This initial stage 

holds paramount importance as it furnishes 

essential data necessary for refining models that 

influence the accuracy of Landslide Susceptibility 

Mapping (LSM) [31]. Therefore, the precision of the 

landslide inventory directly impacts the 

effectiveness of LSM models [32]. Higher quality 

and accuracy in the landslide inventory correspond 

to enhanced predictive capabilities and execution 

of LSM models, emphasizing the critical need for 

meticulous data collection and analysis [32]. 

Landslide inventory of this study includes 665 past 

landslide locations which were identified from 

Google Earth Images and a few field 

investigations. Most of landslides occur in this area 

are classified as shallow landslides (Fig 3). Out of 

these, 70% of landslide data were randomly 

selected for generating the training dataset and 

30% remaining were selected randomly for 

generating testing dataset. It should be mentioned 

that, in order to ensure the reliability of the of the 

modelling applied in this study, another sample with 

a number of 665 non-landslide locations was 

generated. This sample was split into 70% of non-

landslide data (464 locations) included in the 

training dataset and 30% (201 locations) included 

in testing dataset [33]. The produced landslide 

inventory maps are then associated with 

contributing geo-environmental parameters such 

as land cover, topography, geology, 

geomorphology, and other factors to assess the 

likelihood of terrain causing a landslide allocated to 

a susceptibility level [34]-[37]. 

4.3. Landslide influencing factors 

The spatial distribution of landslides is 

influenced by both triggering factors and 

modulating variables, which are chosen based on 

various characteristics such as morphology, 

geology, hydrology, and human activities within the 

area [38]. It's important to distinguish between 

these factors, with modulating variables including 

features such as roads, faults, geology, slope 

angle, and land use, while triggering factors 

encompass phenomena like rainfall and 

earthquakes. The selection of independent factors 

for Landslide Susceptibility Mapping (LSM) does 

not adhere to universal criteria, but rather relies on 

factors that are non-redundant, consistent, 

actionable, and measurable. Utilizing tools like 

ArcGIS, essential modulating variables can be 

extracted from digital elevation models, including 

elevation, slope, aspect, curvature, Normalized 

Difference Vegetation Index (NDVI), geological 

attributes, distance to faults, flow accumulation, 

Stream Power Index (SPI), Topographic Wetness 

Index (TWI), distance to rivers, maximum rainfall, 

distance to roads, and average annual rainfall. 

These fourteen landslide factors can be 

categorized as follows: Slope angle is one of the 

important factors affecting the occurrence of 

landslides [39]. Landslides often occur on slopes 

with slope angles from 15o to 54o and rarely occur 

on slopes with small slopes of 0o – 10o. This map 

is built with different layers including 5 layers: 0 -

11.102188, 11.102188 - 19.088648, 19.088648 -

26.649187, 26.649187 - 35.679176, 35.679176 - 

76.4725 (Fig 4.a). 

Aspect is an important factor affecting the 

occurrence of landslides because it affects the 

moisture content of the materials forming the slope 

[40]. In this study, the slope direction map is 

extracted from the 30 m DEM from USGS source 

(http://earthexplorer.usgs.gov/) digital terrain 

model with different layers including: Flat, North, 

Northeast, East, Southeast, South, Southwest, 

West, Northwest (Fig 4.b). 

Curvature of the terrain surface affects the 

occurrence of landslides because water flow and 

surface water accumulation depend significantly on 

the surface shape of the terrain. Landslides often 

occur in areas with concave terrain surfaces than 

areas with flat terrain and convex terrain because 

surface water often accumulates in more concave 

terrain [41]. In this study, the topographic surface 

shape map is extracted from the 30m DEM digital 

elevation model with 3 layers such as concave (< -
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0.05), plan (-0.05 –0.05) and convex (> 0.05) (Fig 

4.c). 

Elevation affects the process of landslides 

because at different terrain elevations, the 

weathering level of soil types on slopes is different 

[42]. In this study, the terrain elevation map is 

extracted from the 30m DEM digital elevation 

model and divided into 9 layers: 137 - 443, 443 - 

607, 607 - 742, 743 - 874, 874 - 1006, 1006 - 1145, 

1145 - 1305, 1305 - 1515, 1515 - 2184 (Fig 4.d). 

The influence of geological and tectonic 

conditions is considered a fundamental factor 

causing the landslide process, especially 

lithological composition is one of the most 

important factors affecting slope stability [43]. 

Rocks with low durability tend to weather into less 

durable materials. Geological maps are collected 

from national data sources at a scale of 1:200.000. 

Regional geological layers include: Cretaceous 

system, Devonian system, Neoproterozioc system, 

Paleogene system, Permian system, Quantermary 

system, Silurian system, Triassic system (Fig 4.e). 

Landslides are closely related to vegetation 

cover. Areas with low vegetation cover will cause 

larger landslides than areas with high vegetation 

cover [44]. Vegetation cover map (NDVI) is taken 

from satellite data images with and divided into 6 

classes: -0.05806 – 0.13206, 0.13206 – 0.181656, 

0.181656 – 0.222987, 0.222987 – 0.264317, 

0.264317 – 0.313914, 0.313914 - 1 (Fig 4.f). 

Distance to faults are products of tectonic 

movements that cause discontinuity in soil and 

rock on the slope, thus affecting the process of 

landslides [45]. In this study, the distance to the 

faults was selected as a causal factor affecting the 

landslide process. The fault system is extracted 

from the geological map at a scale of 1:200.000. 

The distance map to the faults is established with 

6 classes: 0 - 100, 100 - 200, 200 - 300, 300 - 400, 

400 - 500, > 500 (Fig 4.g). 

Stream power index (SPI) is a metric related 

to the velocity of flow and the erosion it causes in 

rivers and streams. The greater the flow power, the 

greater the erosion rate and impact. The flow 

power map was established using ArcGIS software 

and divided into 6 layers: 0 – 619.188, 619.188 – 

3715.130, 3715.130 – 9287.825, 9287.825 – 

18575.651, 18575.651 – 35912.924, 35912. 924 -

158512.210 (Fig 4.h).  

SPI value is calculated by the equation [46]:  

SPI=As.tanβ                                                                                                       (12) 

In which, As is the area of water collection 

area, β is the terrain slope in degrees. 

Topographic wetness index (TWI) is a metric 

based on the ratio or catchment area to slope 

angle. It provides a measure of soil moisture that is 

positively associated with landslide occurrence. 

The flow power map was established using ArcGIS 

software and divided into 6 layers: 2.033716 - 

4.755845, 4.755845 - 5.728034, 5.728034 - 

6.894661, 6.894661 - 8.450164, 8.450164 - 

10.459354, 10.459354 - 18.625742 (Fig 4.i). 

 The TWI value can be constructed as follows 

[47]: 

TWI = ln
As

tanβ

 (13) 

In which, As is the area of the water collection 

area, β is the terrain slope in degrees 

Flow accumulation is considered by some 

researchers to be an important moderating factor 

for landslide hazard mapping [48]. It is used to 

determine the flow or potential flow of rivers and 

streams. The flow accumulation map was 

established using ArcGIS software and divided into 

6 layers: 0 - 110, 110 - 426, 426 - 1005, 1005 - 

2024, 2024 - 4019, 4019 - 15360 (Fig 4.j). 

Distance to rivers  was selected to analyze 

the relationship with the landslide occurrence 

process. Rivers and streams affect the occurrence 

of landslides because slopes near rivers and 

streams often have higher humidity than other 

areas [49]. In addition, water flows in areas with 

rivers and streams have a direct mechanical 

impact on the soil and rock of the slope. The river 

and stream system is extracted from a 1:50.000 

scale topographic map. The distance map to the 
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rivers and streams is built into 6 layers: 0 - 100, 100 

- 200, 200 - 300, 300 - 400, 400 - 500, > 500 (Fig.4 

k). 

Distance to roads was selected to evaluate 

the influence of roads on the occurrence of 

landslides.  The process of cutting slopes to build 

traffic routes often directly impacts the slope, 

causing loss of continuity of soil and rock on the 

slope, creating an area of water accumulation that 

reduces the strength of soil and rock on the slope 

[50]. Slope affects the occurrence of landslides. 

The road system is extracted from a 1:50.000 scale 

topographic map. The distance map to roads is 

built into 6 layers: 0 - 100, 100 - 200, 200 - 300, 300 

- 400, 400 - 500, > 500 (Fig  4.m).  

Maximum daily rainfall and Average annual 

rainfall is the most affecting factor for landslide 

occurrence [51]. Maximum rainfall map and 

Average annual rainfall map was constructed from 

the meteorological data. The Maximum rainfall is 

divided into five classes including: 62.60 – 86.90, 

86.90 – 91.91, 91.91 – 94.54, 94.54 – 98.13, 98.13 

– 105.06 (Fig 3.n). Similarly, the average annual 

rainfall is also divided into five classes including: 

1726 – 1830, 1830 – 1900, 1900 – 1970, 1970 – 

2050 and 2050 – 2147 (Fig 4.n and Fig 4.o). 
 

  

Fig 3. Landslide photos of the study area (Sourcehttps://dienbientv.vn/) 
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Fig 4. Thematic maps of the study area 
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5. Results and discussion 

5.1. Validation of the models 

The spatial landslide prediction model using 

LGBM, GB and KNN techniques is built on the 

training data set and verified on the validation data 

set, and the results of the models' forecasting 

capacity are shown in Fig 5, Fig 6, Fig 8 and Table 

1. The forecasting results using the ROC curve 

technique (Fig 8) show that the AUC values of all 

three models LGBM, GB and KNN are high for the 

whole set. training and validation data. Specifically, 

the AUC values of the LGBM, GB and KNN models 

for the training data set are 0.94, 0.81 and 0.89 

respectively, while those for the validation data set 

are 0.85, 0.81 and 0.79 respectively. However, the 

AUC value of the LGBM model is higher than the 

GB and KNN models for both training and 

validation data sets. The forecasting results of the 

three models using other statistical indicators are 

shown in Table 1. The values of the statistical 

indicators of the LGBM model are PPV = 88.65%, 

NPV = 81.97%, SST = 83.13%, SPF = 87.82%, 

ACC = 85.32% and K = 0.71 using the training 

dataset and PPV = 78.89%, NPV = 76.12%, SST = 

76.59%, SPF = 78.46%, ACC = 77.50% and K = 

0.55 using the validation data set. The values of the 

statistical indices of the GB model are PPV = 

81.37%, NPV = 65.30%, SST = 70.24%, SPF = 

77.69%, ACC = 73.36% and K = 0.47, respectively, 

using the training data set and PPV = 84.92%, NPV 

= 63.68%, SST = 69.83%, SPF = 81.01%, ACC = 

74.25% and K = 0.49 using the validation data set. 

The values of the statistical indices of the KNN 

model are PPV = 80.51%, NPV = 80.39%, SST = 

80.51%, SPF = 80.39%, ACC = 80.45% and K = 

0.61 using the training data set and PPV = 67.34%, 

NPV = 72.64%, SST = 70.90%, SPF = 69.19%, 

ACC = 70.00% and K = 0.39 using the validation 

data set. Fig 5 and Fig 6 show the distribution of 

root mean square error (RMSE) values of the 

LGBM, GB and KNN models using the training 

dataset and validation dataset. Fig 7 depicts the 

utilization of SHAP to elucidate the features of 

LGBM, GB, and KNN models. The features are 

arranged in descending order of importance based 

on their absolute average SHAP values, which 

signify the magnitude of their impact on the model's 

output. Positive SHAP values indicate positive 

effects, whereas negative SHAP values signify 

negative effects. In Fig 7, the color spectrum 

ranges from red to blue, with redder shades 

indicating larger eigenvalues and bluer shades 

indicating smaller eigenvalues. A broader spectrum 

of colors corresponds to a more pronounced effect 

of the feature, indicating its greater importance in 

influencing the model's predictions. 

Table 1. Accuracy analysis of the models 

No Parameters 
Training Testing 

LGBM GB KNN LGBM GB KNN 

1 TP 414 380 376 157 169 134 

2 TN 382 303 373 153 128 146 

3 FP 53 87 91 42 30 65 

4 FN 84 161 91 48 73 55 

5 PPV (%) 88.65 81.37 80.51 78.89 84.92 67.34 

6 NPV (%) 81.97 65.30 80.39 76.12 63.68 72.64 

7 SST (%) 83.13 70.24 80.51 76.59 69.83 70.90 

8 SPF (%) 87.82 77.69 80.39 78.46 81.01 69.19 

9 ACC (%) 85.32 73.36 80.45 77.50 74.25 70 

10 K 0.71 0.47 0.61 0.55 0.49 0.39 

11 MAE 0.15 0.27 0.20 0.23 0.26 0.30 

12 RMSE 0.38 0.52 0.44 0.47 0.51 0.55 
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Fig 5. RMSE analysis of the models using training dataset 

 

Fig 6. RMSE analysis of the models using validating dataset 

 

Fig 7.  SHAP factor importance 
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Fig 8. AUC analysis of the models using (a) training dataset and (b) validating dataset

5.2. Construction of landslide susceptibility 

maps 

The landslide susceptibility zoning map was 

built using the training results of the LGBM model 

and is shown in Fig 9. Specifically, the probability 

value of landslide occurrence for pixels in the study 

area determined through the process of training the 

LGBM model. These values are then classified into 

five classes: very high, high, moderate, low and 

very low using the natural breakpoint classification 

method built into the ArcGIS application. 

Fig 10.b shows the distribution of past 

landslides across the zoning layers of the landslide 

hazard zoning map. To evaluate the accuracy of 

the prediction map, landslides in the validation data 

are overlapped with the layers of the zoning map 

and the frequency ratio of occurrence is 

determined, the results are shown in Fig 10.a. 

Evaluation results show that most landslides in the 

past occurred in the very high and high probability 

classes with the highest frequency ratio values: 

Very high (5.48), high (1.863). This proves that the 

spatial landslide prediction map built from the 

results of the LGBM model is highly accurate and 

can be used to help minimize the impact caused by 

landslides. 
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Fig 9. Landslide susceptibility map produced using the LGBM model 

  

Fig 10. Analysis of landslide density on the susceptibility maps using the models 

6. Conclusions 

Landslide susceptibility zoning maps are 

useful tools for effective land use planning to 

minimize impacts caused by landslide disasters. 

The article uses advanced artificial intelligence 

techniques: LGBM, GB and KNN to build a spatial 

forecast map of landslides in Dien Bien province. A 

map of the current landslide situation has been 

built with a total of 665 landslides in the past. A total 

of 14 landslide cause parameters were selected to 

build a database used for the prediction model.  

The SHAP analysis presented offers 

valuable insights into feature importance across 

LGBM, GB, and KNN models. The arrangement of 

features based on absolute average SHAP values 

provides a clear understanding of their impact on 

model output, with positive and negative SHAP 

values indicating directionality. The color spectrum 
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in the visualization serves as a visual cue, with 

varying intensities highlighting the significance of 

features in influencing model predictions. 

Quantitative evaluation techniques such as 

ROC curves were used to Evaluate and compare 

the accuracy of models. The results of the study 

show that all three models LGBM, GB and KNN 

have high accuracy in building landslide 

susceptibility zoning maps; However, the LGBM 

model has higher accuracy than the GB and KNN 

models. Therefore, the LGBM model can be used 

as a potential tool in building landslide 

susceptibility zoning maps. The landslide 

susceptibility zoning map in Dien Bien province 

was built with high accuracy and can be used in 

land use planning and decision making related to 

landslide disaster management. The proven LGBM 

technique can be applied to other regions 

considering the uniqueness and characteristics of 

each region. 
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