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Abstract: Predicting the macroscopic permeability of porous media is critical 

in various scientific and engineering applications. This study proposes a novel 

model that combines Random Forest (RF) and rime-ice (RIME) optimization 

algorithm, denoted RIME-RF-RIME, to predict permeability based on six key 

features covering fluid phase dimensions, geometric characteristics, 

surrounding phase permeability, and media porosity. After the input space 

simplification process using RIME, the RF model achieves high predictive 

accuracy with a coefficient of determination (R2) of 0.980. Furthermore, 

SHapley Additive exPlanations (SHAP) values are employed to decipher these 

features' importance and interaction effects on the model's predictions. The 

analysis reveals that porosity, permeability of the porous phase, and the size 

of the fluid phase perpendicular to the flow direction exert the most significant 

individual influences. This study not only unveils crucial insights into the 

underlying mechanisms governing permeability in porous media but also 

contributes to developing interpretable and reliable predictive models for 

related applications. 

Keywords: Fluid flow; Permeability; Machine Learning; Random forest; SHAP 

values. 

 
 

1. Introduction  

In civil engineering, understanding fluid flow 

within porous media holds immense significance, 

impacting the design and performance of 

structures like dams, foundations, and 

underground reservoirs and informing strategies 

for geotechnical engineering and environmental 

remediation. Infiltration systems, ranging from 

clean water purification to life-saving drug 

manufacturing, precise separation hinges on 

optimal permeability [1]. Accurately predicting 

permeability empowers the design of efficient 

filters, minimizing energy consumption and 

maximizing throughput [2,3]. Beyond filtration, the 

energy sector critically relies on the intricacies of 

permeability within porous rock formations [4]. Vast 

underground reservoirs hold valuable resources 

like oil and gas, and their extraction efficiency is 

directly tied to the flow characteristics governed by 

permeability [5]. Precise permeability predictions 

enable researchers to inform extraction strategies, 

maximizing resource utilization while minimizing 

environmental impact [6]. Furthermore, 

groundwater contamination, a significant threat to 

global water security, necessitates a deep 

understanding of flow dynamics within porous 

media. Predicting permeability allows researchers 

to map and manage groundwater flow, enabling 

proactive measures to prevent pollutant spread 

and safeguard this precious resource [7,8]. This 
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knowledge facilitates targeted interventions for 

containment and remediation in contaminated 

areas, ensuring the long-term sustainability of 

clean water supplies for future generations [9]. 

Empirical correlations, like those explored in 

Bachmat and Bear [10,11], Ergun [12], and 

Scheidegger [13,14], offer an established and 

efficient approach to predict fluid flow in porous 

media. Their broad applicability across diverse 

fields and established presence make them 

familiar and convenient tools. However, these 

correlations can be susceptible to inaccuracies in 

complex geometries, diverse flow regimes, and 

situations with inherent uncertainties in porous 

media properties. Thus, moving beyond the 

limitations of empirical correlations often requires 

alternative methods. 

Traditional simplified models often struggle to 

capture the full complexity of multiphase 

interactions, turbulence, and diverse pore 

geometries, leading to inaccurate predictions. This 

is where the power of numerical simulations 

emerges. Advanced methods like the Finite 

Element Method (FEM) [15], Fast Fourier 

Transform (FFT) [16,17], and Lattice Boltzmann 

(LB) [18] methods offer a paradigm shift in 

permeability prediction. These methods 

reconstruct intricate pore geometries and diverse 

flow phenomena, transcending the limitations of 

simplified models. Their inherent flexibility allows 

them to adapt to diverse porous media and flow 

conditions, paving the way for highly accurate 

permeability predictions [19]. For instance, FEM 

simulations have been successfully employed to 

investigate the impact of pore geometry on 

permeability in fractured rock, providing insights for 

optimizing oil and gas extraction [20,21]. Similarly, 

LB simulations have shed light on multiphase flow 

phenomena in porous media, crucial for 

understanding processes like CO2 sequestration 

[22–24]. 

However, achieving accurate predictions is 

not without its hurdles. The computational 

demands of these methods can be substantial, 

requiring access to high-performance computing 

resources, especially for large or complex systems 

[25]. Furthermore, obtaining accurate 

representations of pore geometry often hinges on 

detailed experimental data, which can be scarce or 

challenging to acquire [26]. Additionally, choosing 

the appropriate numerical parameters is critical, 

demanding expertise and careful calibration, as 

even minor variations can significantly impact the 

results [27]. While offering greater interpretability 

than simpler models, understanding the intricate 

numerical computations within these methods can 

be challenging, requiring specialized knowledge. 

Finally, scaling these simulations to encompass 

vast porous systems remains an ongoing 

challenge, demanding advanced techniques and 

computational resources [28].  

The traditional toolbox of civil engineering is 

getting a digital upgrade with artificial intelligence-

powered machine learning (AI-ML). This 

transformative technology tackles complex 

challenges like earthquake simulations [29,30] 

material property prediction [31,32], and structural 

engineering [33,34], leading to optimized designs 

and informed decision-making. Indeed, 

advancements in AI-powered structural analysis 

hold promise for the design of bridges capable of 

withstanding extreme loads [35]. Similarly, AI 

contributes to the development of sustainable 

construction materials through its remarkable 

design accuracy [36,37]. Even project 

management benefits from AI's predictive 

capabilities, leading to optimized schedules and 

budgets [38]. Notably, the integration of advanced 

ML algorithms offers the ability to learn from vast 

datasets encompassing fluid-porous media 

interactions. This enables remarkably accurate 

predictions of fluid behavior within complex 

structures [39,40]. In geotechnical engineering, 

AIML-driven simulations can predict soil-water 

interactions with unprecedented accuracy, leading 

to safer foundation design and slope stability 
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analyses [41]. Similarly, environmental remediation 

efforts can benefit from targeted interventions 

guided by AI-modeled contaminant transport, 

minimizing environmental impact and optimizing 

cleanup strategies [42]. Despite the promise of ML 

in predicting fluid flow, limitations persist. Scarce 

and biased data hinders training, while complex 

models lack interpretability and require significant 

computational resources. Additionally, capturing 

intricate geometries remains a challenge. 

Overcoming these limitations requires further 

research, paving the way for more reliable, 

efficient, and generalized ML-driven fluid flow 

predictions across diverse applications.  

This work addresses the limitations of 

previous studies by employing ML and readily 

available data to predict macroscopic permeability. 

While the dataset consists of 1728 data points 

derived from FEM simulations, the innovative 

approach utilizes XGBoost to achieve accurate 

predictions. The model leverages various inputs, 

including porous phase geometry, flow behavior, 

and porosity. Notably, it employs a novel ML 

algorithm to identify the most impactful features 

before model development, leading to a more 

efficient and accurate prediction process. 

Following rigorous verification and evaluation, the 

optimal model is selected for further analysis. 

Finally, a comprehensive sensitivity analysis is 

conducted to assess the influence of each input on 

the prediction outcome, providing valuable insights 

into the key factors governing permeability and 

enhancing our understanding of the underlying 

physical processes.  

2. Materials and Methods 

2.1. Database acquisition 

Table 1. The parameters used in the development of the ML model 

 Min Median Average Max 

X1 0.05 0.25 0.25 0.45 

X2 0.05 0.25 0.25 0.45 

X3 0.3 1.5 13.3 50 

X4 0.3 1.5 13.3 50 

X5 1e-6 1e-5 3.7e-5 1e-4 

X6 0.022 8.827 16.959 80.956 

Y 0.59 25.00 27.13 79.10 

 

Fig. 1. Representation of the fluid flow problem in the unit cell 
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This study utilizes a dataset sourced from the 

literature [43]. The dataset encompasses 1728 

results obtained from finite element method (FEM) 

simulations of fluid flow through a unit cell. Periodic 

boundary conditions are imposed on the unit cell to 

calculate the macroscopic permeability. The 

simulated flow scenario involves two distinct flow 

directions, aligned with the Ox and Oy axes. The 

dataset comprises six input variables (Table 1): 

• X1 and X2: Dimensions of the fluid phase 

within the unit cell, corresponding to the Ox and Oy 

axes, respectively. 

• X3 and X4: Geometric characteristics of the 

fluid phase. 

• X5: Permeability of the porous phase 

surrounding the fluid phase. 

• X6: Porosity of the unit cell or the porous 

media. 

Notably, the unit cell employed in this study 

is unidimensional (size 1 x 1). Consequently, all 

input variables are unitless. While the simulations 

generate macroscopic permeability values for both 

Ox and Oy directions, only a single permeability 

value (denoted Y) is retained for analysis due to the 

considered symmetric flow. Readers seeking a 

more detailed description of the dataset and the 

underlying flow problem (Figure 1) are encouraged 

to refer to [43]. 

2.2. ML methods 

Introduced by Leo Breiman in 2001, Random 

Forest (RF) stands as a powerful ensemble 

learning technique within the ML domain [44]. Its 

core principle lies in combining the predictions of 

multiple decision trees, ultimately leading to 

enhanced accuracy and robustness compared to 

individual trees. Regarding its operational 

mechanism, RF employs bootstrap aggregation 

(bagging) to generate numerous training subsets 

by drawing random samples (with replacement) 

from the original dataset. Each of these subsets 

then serves as the training ground for a distinct 

decision tree. At each node within these trees, a 

random subset of features is chosen from the 

entire pool, and the optimal split amongst these 

features is identified to partition the data into child 

nodes. This inherent randomness introduced at 

every step contributes to reducing the correlation 

between trees, thereby mitigating the risk of 

overfitting. In the context of regression problems, 

after all trees have completed training, new data 

points are evaluated by averaging the predictions 

made by each individual tree. Notably, RF has 

garnered significant success in various civil 

engineering applications, encompassing Structural 

health monitoring, Material property estimation, 

Landslide susceptibility mapping and Traffic flow 

prediction. In conclusion, RF's ensemble 

approach, user-friendliness, and interpretability 

position it as a valuable ML tool capable of tackling 

complex prediction problems across diverse fields, 

including but not limited to the aforementioned civil 

engineering applications. 

The physical phenomenon of the rime-ice 

(RIME) optimization algorithm, introduced by Su et 

al. in 2023 [45], is a novel optimization technique 

drawing inspiration from the captivating 

phenomenon of rime ice formation. Rime ice, 

characterized by its intricate crystalline structures, 

forms when supercooled water droplets solidify 

upon contact with a cold object. Regarding working 

mechanism, RIME mimics the two-stage growth 

process of rime ice, offering a compelling approach 

to optimization. Soft-Rime Search: This initial 

phase, akin to the feathery layer of young rime ice, 

utilizes a population of candidate solutions and 

evaluates their fitness. The algorithm leverages 

random exploration and information exchange 

between individuals to progressively refine these 

solutions. Hard-Rime Puncture: Drawing 

inspiration from the denser, crystalline structure of 

mature rime ice, this phase focuses on exploitation. 

The best solutions identified in the previous stage 

undergo mutation and recombination, aiming to 

discover improved solutions and escape potential 

local optima. Overall, RIME offers a fresh 

perspective on problem-solving through 
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optimization. Its balanced exploration and 

exploitation capabilities make it well-suited for 

tackling complex and challenging search 

landscapes. As research in this area continues to 

evolve, RIME's potential contributions to various 

fields, including civil engineering, are likely to 

become more significant. 

2.3. Sensitivity analysis 

SHAP (SHapley Additive exPlanations) 

values, introduced by Lundberg and Lee in 2017 

[46], have become a fundamental tool for 

enhancing interpretability and transparency in ML. 

This innovative approach, grounded in game 

theory, offers a quantified and principled 

understanding of how individual features contribute 

to a specific prediction made by any ML model. 

Drawing inspiration from Shapley values within 

cooperative game theory, SHAP values estimate 

the marginal contribution of each feature to the 

model's prediction. This is achieved by considering 

all possible feature combinations, thereby 

revealing not only the individual influence of each 

feature but also its collective impact when 

interacting with other features. SHAP values can 

identify features that exert the most significant 

influence on model predictions. This crucial 

information enables engineers to prioritize 

resources more effectively and make informed 

decisions based on a deeper understanding of the 

factors governing the prediction task. By 

highlighting features that warrant further 

refinement or removal, SHAP values contribute to 

an iterative improvement process, ultimately 

enhancing the performance and generalizability of 

ML model. By providing a rigorous and 

interpretable framework for understanding feature 

contributions within ML models, SHAP values 

empower researchers across various fields to 

confidently utilize and explain complex predictions. 

Their versatility and effectiveness have firmly 

established them as a responsible and trustworthy 

AI cornerstone. 

2.4. Model metrics 

R2 (coefficient of determination) is a widely 

used metric for evaluating the proportion of 

variance in a dependent variable (target) explained 

by an independent variable (model prediction). R² 

values range from 0 to 1, with a value of 0 

explaining no variance in the target variable (poor 

performance) and a value of 1 explaining all the 

variance in the target variable (perfect fit). RMSE 

(root mean squared error) measures the average 

magnitude of the difference between predicted and 

actual values. Lower RMSE values indicate better 

agreement between predictions and actual 

observations. Unlike R2, RMSE has a precise unit 

of measurement corresponding to the scale of the 

data, allowing for a more straightforward 

interpretation of the error magnitude. In conclusion, 

R2 and RMSE are used in this study because they 

provide helpful information about model 

performance. These metrics can be calculated in 

the literature [47,48]. 

3. Results and discussions 

3.1. Feature reduction analysis 
 

  

Fig. 2. Feature selection using RIME for the fluid flow problem: (a) pop=50, (b) pop=100 
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Table 2. Summarized results of feature selection process using RIME 

Model Pop_size X1 X2 X3 X4 X5 X6 Fitness function Objective function 

RIME 50  X   X X 0.810 0.956 

RIME 100  X   X X 0.821 0.968 

 

This section describes the process of 

analyzing and reducing features used for 

regression tasks. A metaheuristic optimization 

algorithm called RIME is employed for this 

purpose. Two population sizes (pop) of 50 and 100 

are investigated, while the epoch is set to 100 for 

simplicity. The prediction model used for evaluation 

is an RF with default hyperparameters from the 

scikit-learn library. The fitness function considers 

two aspects: R² of the prediction and the reduction 

in the number of features compared to the original 

set. Both criteria are weighted equally (1-1) in the 

fitness function. The results of this analysis are 

presented in Figure 2. 

For pop = 50, the fitness function, which 

combines R² and the reduction in input features, 

reaches a value of 0.81 after only 3 epochs. 

However, this value is surpassed by the case of 

pop = 100, where the fitness function reaches 

0.821. This suggests that a larger population size 

improves the search process and leads to better 

solutions. Furthermore, the results indicate that no 

significant improvement in the fitness function is 

observed after a certain number of epochs. This 

suggests that the algorithm has converged and 

found a near-optimal solution. Finally, the analysis 

identifies a reduced input space of 3 features, 

compared to the original set of 6. This represents a 

significant reduction in dimensionality, achieved 

while maintaining high prediction accuracy. The 

fitness function value at convergence (0.821) 

indicates a good balance between feature 

reduction and prediction performance. Additionally, 

the objective function (R²) reaches 0.968, 

demonstrating the excellent prediction capability of 

the RF model using only 3 selected features. Table 

2 summarizes the detailed results of the feature 

reduction process, including the identified features 

and corresponding parameters. 

The feature reduction process using RIME 

identified three key features (X2, X5, X6) from the 

original set of six for predicting the target variable. 

This selection is supported by both ML and 

physical considerations. Firstly, X2, representing 

the size of the porous fluid perpendicular to the flow 

direction, is a relevant choice from a physical 

perspective. This feature likely captures important 

information related to the flow dynamics and 

contributes significantly to the permeability. 

Secondly, X5, corresponding to the permeability of 

the porous media, is well-known for its crucial role 

in governing the overall system behavior. Including 

this feature ensures that the model captures the 

fundamental physical characteristics relevant to 

the target variable, the macroscopic permeability. 

Lastly, X6, representing the porosity of the media, 

is considered, along with X2, to be a representative 

group of input features. While not directly related to 

X1, X3, and X4, their combined influence likely 

captures the overall pore structure and indirectly 

affects the target variable. This selection strategy 

demonstrates an understanding of the physical 

relationships between the features, leading to a 

more interpretable and meaningful ML model. 

3.2. Hyperparameter selection 

This section details the hyperparameter 

selection process for the RF model used in 

conjunction with the RIME feature reduction 

technique. The optimized feature space identified 

by RIME is employed for this stage. A 5-fold CV of 

R² is utilized as the baseline metric for fine-tuning 

the hyperparameters. RIME, a metaheuristic 
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optimization algorithm, is employed to optimize the 

hyperparameters. The number of iterations is set to 

300, while the pop varies across different values: 

25, 50, 75, and 100. This approach allows for 

exploring the impact of population size on the 

optimization process. It is important to note that the 

model resulting from this process is denoted as 

"RIME-RF." The placement of "RIME" before "RF" 

emphasizes that RIME serves as a pre-processing 

step for the problem, responsible for selecting the 

optimal feature space before the RF model 

performs the prediction task. 

Table 3. Hyperparameters used in the development of RF model 

Hyperparameter Explanation Ranges Best found 

n_estimators Number of trees in the forest 1-500 240 

max_depth Maximum depth of the tree 1-10 6 

min_samples_split 
Minimum number of samples required 

to split a node 
2-8 3 

min_samples_leaf 
Minimum number of samples required 

to be at a leaf node 
1-8 2 

 

  

  

Fig. 3. Hyperparameters tuning of RIME-RF model using RIME with different pop sizes: (a) pop = 25, (b) 

pop = 50, (c) pop = 75, (d) pop = 100 

The results, presented in Figure 3, reveal an 

interesting observation. Contrary to a potential 

linear trend, the R² does not exhibit a clear 

relationship with increasing pop values. The 
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converged R² values after 300 iterations for pop 

sizes 25, 50, 75, and 100 are 0.855, 0.841, 0.872, 

and 0.857, respectively. This finding highlights that 

larger pop sizes do not necessarily guarantee 

superior prediction accuracy. Following the fine-

tuning process, pop 75 emerges as the 

configuration leading to the best prediction 

accuracy (R² = 0.872). Consequently, the 

hyperparameters identified under this pop size are 

adopted for the final RF model. These 

hyperparameters are presented in detail in Table 3. 

This analysis underscores the importance of 

investigating the impact of hyperparameter tuning 

parameters, such as population size, on RIME's 

optimization performance. It demonstrates that an 

optimal configuration might not always be achieved 

by simply increasing a specific parameter value. 

In conclusion, the hyperparameter selection 

process for the RIME-RF model has been 

successfully completed. Optimal hyperparameters 

are identified by utilizing RIME and employing a 5-

fold CV of R² as the evaluation metric. To reflect the 

complete optimization process, the model is now 

denoted as "RIME-RF-RIME." This nomenclature 

highlights the sequential application of RIME for 

feature reduction and hyperparameter selection, 

culminating in the optimized RIME-RF model. 

3.3. Model performance 

This section presents the prediction results 

obtained using the RIME-RF-RIME model for 

estimating the macroscopic permeability on both 

the training and testing datasets. The model's 

performance is evaluated by comparing its 

predictions with the established FEM results. 
 

  

Fig. 4. Regression analysis of RIME-RF-RIME model: (a) training, (b) testing 

The RIME-RF-RIME model exhibits 

promising results. Analyzing Figure 4 reveals a 

close agreement between the model's predictions 

and the FEM reference values for both the training 

and testing sets. This observation suggests that 

the feature reduction process, guided by RIME, 

has successfully identified a concise yet 

informative set of features crucial for accurate 

permeability prediction. Additionally, the optimized 

hyperparameters, also determined by RIME, 

effectively leverage the chosen features to achieve 

high prediction accuracy. 

RIME-RF-RIME demonstrates exceptional 

performance, achieving high accuracy on both 

training and testing datasets. The model exhibits 

an R2 of 0.996 and 0.980 for the training and testing 

sets, respectively, and 0.992 for the entire dataset. 

The RMSE values are also remarkably low 

(7.345e-6 and 1.331e-5 for training and testing, 

respectively), indicating minimal deviations 

between the predicted and actual permeability 

values. To provide context, a comparison is 

incorporated with relevant research. Of note, Ly 

and Nguyen [43] employed a Gradient Boosting 

model and achieved an R² of 0.998.  This study 

demonstrates comparable predictive performance 



JSTT 2024, 4 (1), 58-71                                                Phan & Ly 

 

 
66 

while utilizing a more concise set of input variables. 

This finding implies that the proposed RIME-RF-

RIME model successfully identifies the most 

influential factors driving the target outcome. 

This successful outcome demonstrates the 

potential of RIME-RF-RIME as an efficient and 

reliable tool for estimating macroscopic 

permeability in similar applications. By combining 

feature selection and hyperparameter optimization, 

the model achieves comparable accuracy while 

utilizing fewer features, leading to a more efficient 

and interpretable solution than the complete 

feature set. 

3.4. Sensitivity analysis 

Understanding the rationale behind a 

model's predictions is paramount for fostering trust 

and interpreting its results effectively. This section 

delves into a sensitivity analysis employing SHAP 

values to elucidate the inner working mechanism of 

the RIME-RF-RIME model and its predictions 

regarding macroscopic permeability in porous 

media. Figure 5 presents a SHAP bee-swarm plot 

visualization of the analysis. This plot depicts the 

distribution of SHAP values for each feature across 

various data points. An intriguing observation 

emerges from this analysis: the ordering method 

employed to estimate SHAP values can influence 

the perceived importance of specific features in 

predicting macroscopic permeability. Two 

scenarios are investigated.  

 

 

Fig. 5. Shap values analysis using bee-swarm plots: (a) mean absolute value ordering, (b) max absolute 

value ordering 
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In scenario 1, features are ranked based on 

the average of the absolute values of their SHAP 

values across all data points. This approach 

emphasizes the overall influence of each feature, 

regardless of the direction of its effect, whether 

positive or negative, on the permeability. This 

analysis reveals that porosity emerges as the most 

influential, suggesting a consistent impact on the 

model's predictions. The permeability of the porous 

media ranks second, highlighting its inherent 

significance in governing permeability. The size of 

the fluid phase perpendicular to the flow direction 

occupies the third position, indicating its non-

negligible contribution to the model's output. 

Regarding scenario 2, the features are ranked 

based on the largest absolute SHAP value 

observed for each feature across all data points. 

This approach prioritizes features that can exert 

the most substantial influence, either positively or 

negatively, on specific predictions. The analysis 

reveals that the permeability of the porous media 

takes the first important position, underlining its 

potential for significant individual impact on 

predictions. The porosity of the media ranks 

second, showcasing its continued relevance. X2 

(size of the fluid phase perpendicular to flow 

direction) maintains its position in the top three. 

Furthermore, it is noteworthy that in both 

scenarios, X5 (permeability of the porous media) 

and X6 (porosity of the media) consistently exhibit 

positive SHAP values, implying that an increase in 

their values leads to an increase in the model's 

predicted permeability. Conversely, X2 consistently 

exhibits negative SHAP values, suggesting that a 

larger X2 value corresponds to a decrease in 

predicted permeability. 

These findings signify the complexity of 

interpreting model predictions and underscore the 

importance of employing various techniques to 

comprehensively understand the underlying 

mechanisms. The nuanced influence of SHAP 

ordering necessitates a rigorous and multifaceted 

approach to fully comprehend the model's 

decision-making processes and feature 

interactions, ultimately leading to a deeper 

scientific understanding of the problem domain. 

A dependence plot SHAP analysis is 

conducted to further investigate the interaction 

between features and their impact on the predicted 

permeability (Figure 6). 

Observations from the dependence plots 

reveal that increasing the porosity X6 can lead to 

increased permeability, and this trend is true 

regardless of the remaining features, such as the 

porous phase X5 (Figure 6a) and X2 (Figure 6b). In 

contrast, increasing the permeability of the porous 

phase (X5) could also increase the overall 

permeability. However, the coupled effect with X2 is 

not clearly shown in this analysis, suggesting a 

complex behavior with X2. 
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Fig. 6. Shap values dependence analysis: (a) X6 and X5, (b) X6 and X2, (c) X5 and X2 

Overall, SHAP analysis demonstrates its 

value in investigating the RIME-RF-RIME model's 

underlying mechanisms and feature interactions. A 

comprehensive understanding of the model's 

decision-making processes is revealed by utilizing 

both single-feature SHAP analysis and 

dependence plot analysis, leading to a deeper 

scientific understanding of fluid flow in porous 

media problems. 

4. Conclusions and Perspectives 

This study introduced the RIME-RF-RIME 

model, a novel framework that leverages the 

Random Forest ML algorithm optimized by the 

RIME optimization algorithm to predict the 

macroscopic permeability of porous media. The 

model achieved exceptional predictive accuracy, 

with R2 of 0.980, demonstrating its potential for 

simplification of FEM calculations. Furthermore, 

SHAP analysis identified porosity, surrounding 

phase permeability, and the size of the fluid phase 

perpendicular to the flow direction as the features 

exerting the most significant influence on the 

model's predictions. These findings not only offer 

insights into the mechanisms governing 

permeability in porous media but also contribute to 

the development of more interpretable and reliable 

predictive models for various scientific and 

engineering disciplines. 

While the proposed model exhibits promising 

results, certain limitations warrant further 

investigation for future research. First, the study's 

reliance on a single dataset may limit its 

generalizability to broader configurations of porous 

media. Additionally, the focus on six specific 

features excludes the potential impact of other 

influential factors not considered in the current 

analysis. Future studies could address these 

limitations by enhancing the model's 

generalizability through validation on diverse 

datasets, employing sensitivity analysis, or 

incorporating domain knowledge to identify and 

explore the impact of additional features potentially 

relevant to permeability prediction. 
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