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Abstract: Buckling and postbuckling behaviors of porous functionally graded 

graphene platelets-reinforced composite (porous FG-GPLRC) cylindrical 

shells with stiffeners subjected to external pressures are presented in this 

paper. Three distribution types of porosity in the shells are considered. The 

smeared technique for stiffeners is employed to model the mechanical 

behaviors of the stiffened shells. The mechanical formulations are established 

by the thin shell theory considering large deflection assumption, and the Ritz 

method is applied for three deflection amplitudes. The postbuckling formula of 

the pressure-deflection and the explicit critical buckling pressures can be 

achieved. The numerical investigations indicate the outstanding effects of 

stiffeners, porosity distribution, porosity coefficient, and graphene platelet 

(GPL) mass fraction on the nonlinear buckling responses of the stiffened shells. 

Keywords: Stiffener; External pressure; Porous Functionally graded graphene 

platelet reinforced composite; Cylindrical shell; Ritz energy method; Nonlinear 

buckling and postbuckling. 

 

 

1. Introduction 

The cylindrical shell is the typical case of 

closed shells applied for largely loaded structures. 

The composite materials can be used for this 

structure in a lot of applications in transport, civil, 

and aerospace technology equipment. 

Functionally graded material (FGM) was 

manufactured to reduce the disadvantages of 

classical composite. In the last three decades, 

many researchers have made efforts to study on 

the dynamic and static problems of FGM shells. 

Postbuckling responses were investigated for FGM 

cylindrical shells with piezoelectric layers under 

external or hydrostatic pressures taking into 

account the higher-order shear deformation theory 

and singular perturbation method [1]. With the 

similar method and theory, the postbuckling 

responses of FGM cylindrical shells under internal 

pressure with the two-parameter foundation were 

studied [2]. By using the HSDT and neighboring 

balance criterion, the linear buckling responses of 

FGM cylindrical shells were studied [3]. The mixed 
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boundary conditions and first-order shear 

deformation theory (FSDT) were considered in the 

vibrations and stability problems of FGM cylindrical 

shells under external pressure [4]. Torsional 

buckling and vibration of spirally stiffened and 

corrugated FGM cylindrical shells were mentioned 

using the thin shell theory [5,6]. 

A new type of FGM was created, namely, 

Functionally graded carbon nanotube reinforced 

composite (FG-CNTRC). The continuities and 

smoothness in mechanical properties of FG-

CNTRC are designed by changing the volume 

fraction of carbon nanotubes (CNTs) through the 

thickness walls. Many studies show the remarkable 

behaviors of FG-CNTRC structures utilizing 

different methods and theories. Shen [7,8] studied 

the axially and pressure-loaded postbuckling 

responses of FG-CNTRC cylindrical shells with 

temperature rises. Linear buckling responses of 

FG-CNTRC toroidal shell segments and cylindrical 

shells with foundation interaction and subjected to 

axial compression and combined loads were 

investigated [9]. The skew FG-CNTRC cylindrical 

shells were considered in free vibration responses 

utilizing the Chebyshev-Ritz formulation [10]. The 

FG-CNTRC stiffeners were used to stiffen the FG-

CNTRC cylindrical shells and the axial compressed 

buckling responses in thermal environment were 

investigated [11]. 

Other nanomaterials are graphene sheets 

(GSs) and graphene platelets (GPLs), and the new 

advanced composites are created from GSs and 

GPLs and isotropic material to be the Functionally 

Graded graphene reinforced composite (FG-

GRC), and the Functionally Graded graphene 

platelets reinforced composite (FG-GPLRC). FG-

GPLRC and FG-GRC surpass traditional materials 

due to their high tensile strength and rigidity, as well 

as excellent thermal and electrical conductivity. By 

utilizing GPLs and GSs, corrosion resistance and 

material longevity are enhanced, ideal for high-tech 

equipment in civil and mechanical engineering. 

Shen and Xiang [12,13] investigated the axially and 

pressure-loaded postbuckling responses of FG-

GRC laminated cylindrical shells using the HSDT 

and two-step perturbation method. The FG-GRC 

laminated shells can be stiffened by FG-GRC 

laminated stiffeners and the torsionally, axially, and 

pressure-loaded cylindrical shells were studied 

using the Galerkin method [14-16]. The 

postbuckling responses of pressure-loaded FG-

GRC laminated cylindrical shells with three-

dimensional double-V meta-lattice auxetic core 

were presented [17]. Song et al. [18] investigated 

the low-velocity impact responses of FG-GPLRC 

plates using the modified nonlinear Hertz contact 

theory. Nonlinear buckling responses of FG-

GPLRC circular plates and spherical caps with and 

without stiffeners were presented [19-21]. The 

higher-order shear deformable FG-GPLRC 

annular plates were considered in thermal vibration 

problems using the generalized differential 

quadrature method and Hamilton’s principle [22]. 

Nonlinear torsional buckling responses of spirally 

stiffened FG-GPLRC cylindrical shells were 

presented [23] utilizing the improved smeared 

technique for stiffener and Donnell shell theory. 

Porous materials are a common type of 

materials in application structures. With the small 

densities and large stiffnesses, porous materials 

were applied in many structures and mentioned in 

many research works. By distributing porosities 

into the FG-GPLRC structures, the advantages of 

both FG-GPLRC and porous materials can be 

utilized. Porous FG-GPLRC plates and shells were 

considered, and the effects of porosity and GPLs in 

the mechanical responses were discussed [24-26]. 

Stiffening with stiffeners improves the 

stiffness and load-carrying capacity of plates and 

shells without significantly increasing weight, 

optimizing material use in aerospace, automotive, 

and construction industries. As can be observed 

from open literature, there are no works studying 

the nonlinear buckling behaviors of the externally 

loaded porous FG-GPLRC cylindrical shells with 

stiffeners. Therefore, establishing the solutions for 

the problem of mechanical behavior of the FG-

GPLRC shell with stiffeners is an important 
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requirement for engineering design. An explicit 

solution of the nonlinear buckling pressures of 

these structures is presented in this paper. The 

nonlinear formulations are established by applying 

the Donnell shell, and nonlinear large deflection 

theories. The Ritz energy method is applied to 

investigate the postbuckling curves and critical 

buckling loads. The large effects of stiffeners, 

porosity distribution, porosity coefficient, and GPL 

mass fraction on the linear and nonlinear buckling 

behaviors of cylindrical shells are investigated in 

the numerical examples.  

2. Porous FG-GPLRC cylindrical shells with 

stiffeners and governing expressions  

 

Fig. 1. Configuration and geometrical parameters of porous FG-GPLRC cylindrical shells with stiffeners 

Consider the porous FG-GPLRC cylindrical 

shells with stiffeners under external pressure with 

uniform distributed pressure 0q . The geometrical 

parameters of shells and stiffeners are observed in 

Fig. 1. The radius and length of the shells are 

denoted by R  and L , respectively. 

In this paper, the distribution pattern of GPLs 

along the structure thickness is taken to be 

uniformly distributed type, the volume fraction of 

GPL can be expressed by 

( )
* m GPL
GPL

m GPL GPL GPL

W
V .

W 1 W


=
 +  −

 (1) 

The elastic modulus through the structure 

thickness can be estimated using the Halpin-Tsai 

model, meanwhile, the Poisson ratio is determined 

according to the mixture rule, as 

( )
( )

( )
( )

L L *
m G G GPL

1 L *
G GPL

W W *
m G G GPL

W *
G GPL

3E 1 V
E

8 1 V

5E 1 V
,

8 1 V

+  
=

− 

+  
+

− 

 (2) 

*
1 m m GPL GPLV V , =  +   (3) 

where 

L WGPL m GPL m
G GL W

GPL G m GPL G m

L WGPL GPL
G G

GPL GPL

E E E E
, ,

E E E E

2a 2b
, ,

t t

− −
 =  =

+  + 

 =  =

 (4) 

with E,  and   are the denotes of elastic 

modulus, Poisson ratio, and density, respectively. 

The subscripts GPL  and m  denote the GPL and 

matrix materials. 
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Three types of porosity distribution (PC1, 

PC2, and PC3) are considered in this paper, and 

the Poisson ratio and elastic modulus for the shells 

are expressed by 

sh 1, =   (5) 

( )

( ) 
1 1

sh 1 2

1 3

E 1 e cos z h , PC1

E E 1 e 1 cos z h , PC2

E e , PC3

  −  


 = − −   



 (6) 

and for the stiffeners 

st m, =   (7) 

( )
m

st m 2

m 3

E , PC1

E E 1 e , PC2

E e , PC3




= −



 (8) 

where 1e , 2e , and 3e  are porosity 

coefficients. 

It can be seen that the porosities are highly 

concentrated near the middle surface of the shell 

with PC1 distribution, on the contrary, they are 

concentrated mainly on the two shell surfaces with 

PC2 distribution, while evenly distributed over the 

shell thickness with PC3 distribution. The porosity 

distribution in the stiffeners is designed to ensure 

continuity between the shell and the stiffeners. 

Considering the cases that the masses of the 

metal foam matrix are the same with different 

porosity distribution types, the following relations 

are applied as 

( )

( )

h 2

1
0

h 2 h 2

2 3
0 0

1 e cos z h dz

1 e 1 cos z h dz e dz,

−  =

 − −  = 



 

 (9) 

where 1e  is chosen for the reference value, 

2e  and 3e  are calculated according to 1e . 

The Donnell shell and nonlinear large 

deflection theories are employed to establish the 

governing expressions of the buckling behaviors of 

stiffened cylindrical shells subjected to external 

pressures. The strain-displacement relations are 

derived in nonlinear forms, as 

0 2
x ,x ,x

0 2
y ,y ,y

0
xy ,x ,y ,x ,y

1
w u ,

2

1 w
w v ,

2 R

w w v u .

 = +

 = + −

 = + +

 (10) 

The Hooke law for porous FG-GPLRC 

cylindrical shells is applied in this paper 

11 1111 12

22 12 22 22

6612 12

Q Q 0

Q Q 0 .

0 0 Q

     
    
 =     
         

 (11) 

The internal forces of the shells are derived 

in the forms 
 

0
xx

11 12 11 12 0
y y

12 22 12 22
0

xy 66 66 xy

11 12 11 12x ,xx

12 22 12 22y
,yy

66 66
xy

,xy

N
D D 0 C C 0

N
D D 0 C C 0

N 0 0 D 0 0 C
,

C C 0 B B 0M w
C C 0 B B 0M w
0 0 C 0 0 B

M 2w

  
   
   
   
    
 =   
   − 
   
   − 
     
 −   

 (12) 

 

where the components of stiffness ij ijD ,C ,  

and ijB  are calculated by 

( )

( ) ( )

ij ij ij

sh sh sh st st st
ij ij ij ij ij ij

D ,C ,B

D ,C ,B D ,C ,B ,

=

+
 (13) 

with 
sh sh sh
ij ij ijD ,C ,B  and 

st st st
ij ij ijD ,C ,B  are the 

stiffnesses of shell skin and stiffeners, as 

( ) ( )
h 2

sh sh sh 2
ij ij ij ij

h 2

D ,C ,B Q 1,z,z dz,

−

=   (14) 

where 

( )2
11 sh sh 22Q E 1 Q ,= −  =  
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( ) ( )2
12 sh sh sh 66 sh shQ E 1 , Q E 2 1 . =  −  = +    

The stiffnesses of stiffeners can be obtained 

using the improved smeared stiffener technique, by 

yx
styst stx st stst st

11 1 22 121x y
st st

yx
styst stx st stst st

11 2 22 122x y
st st

yx
styst stx st stst st

11 3 22 123x y
st st

st st st
66 66 66

bb
D E , D E ,D 0,

d d

bb
C E ,C E , C 0,

d d

bb
B E , B E ,B 0,

d d

D 0, C 0, B 0,

= = =

= = =

= = =

= = =

 (15) 

where 

( ) ( )
sth 2 h

st st st 2
1 2 3 st

h 2

E ,E ,E E 1,z,z dz.

+

=   

The deformation compatibility equation of 

porous FG-GPLRC cylindrical shells is established 

by employing Eq. (10), as  

0 0 0
x,yy y,xx xy,xy

,xx2
,xy ,yy ,xx

w
w w w 0.

R

 +  − 

− + + =
 (16) 

Introducing the stress function   with three 

following conditions, as 

,yy x ,xy xy ,xx yN ,    N , N . =  = −  =  (17) 

By using Eqs. (10), (12) and (17), the 

compatibility equation (16) can be re-established in 

the following form  

( )

( )

* * * *
11 22 66 ,xxyy 12 ,yyyy

* * *
21 ,xxxx 21 ,xxxx 12 ,yyyy ,xx

* * *
11 22 66 ,xxyy ,x

2
,xy

x ,yy

D D D D w

1
D C C w

R
w

C C C w w

w

,w 0

+ + +

+ + + +

+ + −

  −



+ =

 (18) 

where 

* *22 66 12 66
12 11

2
* * * * 11 6611 22 12
22 11 66 21

D D D D
D ,D ,

D DD D D
D D , D , D ,

= = −
 

−
= = =

 

 

* 22 11 12 12
11 66

D C D C
C D ,

−
=


 

* 22 12 12 22
12 66

D C D C
C D ,

−
=


 

* 11 12 12 11
21 66

1* 11 22 2 12
22 66

D D
D

D C D C
C

C C

D ,

C ,
−



=

=

−



 

2
* 11 22 12
66 66

2
11 22 66 12 66

D D D
C 2C ,

D D D .D D



 =

−
=

−

 

3. Boundary conditions and solving method 

The simply supported porous FG-GPLRC 

cylindrical shells with stiffeners under external 

pressure are considered. The boundary conditions 

at the ends can be presented by 

x xx 0;x L x 0; x L x 0;x L

xy x 0;x L

w M N

N 0.

= = = = = =

= =

= =

= =
 (19) 

The popular form of deflection of pressured 

cylindrical shells is chosen approximately by 

( ) 0

2
1 2

w x,y f

m x ny m x
f sin sin f sin ,

L R L

=

 
+ +

 (20) 

Where 0f ,  1f  and 2f  are the deflection 

amplitudes,  m  and n  are the buckling modes of 

shells. 

By substituting Eq. (20) into Eq. (18), the 

stress function can be achieved, leads to 

1 2

2

3 4 0y

m x ny 2m x
sin sin cos

L R L

3m x ny 2ny hx
sin sin cos ,

L R R 2

 
 =  +  +


 +  − 

 (21) 

where 0y  is the circumferential stress, and 

1 2 4
1 1 1 2 3 1 2

3 3 5

f f f , f f ,
  

 = +  =
  

 

*
21

2 2*
21

2 2 2
2

2 12 2 * 2 2 2 *
21 21

C1
f

2 D

1 L 1 L n
f f ,

8 32Rm D m R D

 =

− +
 

 

2 2 2
2

4 12 2 *
12

1 m R
f ,

32 L n D


 =

 
8 8 8

* * * *
1 21 21 12 128 8

m n
D C D C

L R


 = − −  
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( )

( )

( ) ( )

* * * *
6 6 2 11 66 22 21

6 2 * * * *
11 66 22 21

* * * * * *4 4 4
22 11 66 22 11 66

4 4
* * * *
21 12 21 12

4 4 2 6 6 2 2 4 6
* *
21 124 2 6 2 5 6

2 2 4 4

2 4

C C C D
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L R D D D C

D D D C C Cm n
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D D

L R a L R L R aR

m n m

aL R
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  

− −
 
+ + +  

 + + + −   +
 
+ + 

     
+ + +      

   

 
+ + ( )

( )

( )

4 2
* * *
11 22 664 3

* * * *
2 2 6 11 66 22 12

2 6 * * * *
11 66 22 12

n
D D D

L R

C C C D
m n

,
L R D D D C

 
+ +  

 

 − +
  

−
 
+ + +  

 

( )

2
4 4 4

* *
21 124 4

3
2 2 2

* * *
11 22 662 2

m n
D D

L R

m n
D D D

L R

,

 
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 =
 


 + + +
  

  

( )

6 6 2 2 2 6
* *

4 21 126 2 2 6

4 4 4
* * *
11 22 664 4

m n m n
81 D D

L R L R

m n
9 D D D

L R
,

 
= +


+ + +



 

( )

6 2 6
*

2 216 2

4 4 4 2 2 6
* * * *
11 22 66 124 4 2 6

m n
D

L R

m n m n
D D D D ,

L R L R


= −

 
− −



+ +

 

( )

2
4 4 4

* *
21 124 4

5
2 2 2

* * *
11 22 662 2

m n
81 D D

L R

m n
9 D D D

.

L R

 
+ 

 =
 


 + + +
  

  

For cylindrical shells, the circumferentially 

closed condition must be satisfied, presented as 

2 R L

,y

0 0

2 R L

0 2
y ,y

0 0

v dxdy

w 1
w dxdy 0.

R 2





=

 
 + − = 
 

 

 

 (22) 

Eq. (22) can be rewritten using Eqs. (10) and 

(12), as 

0y *
2

2
2

0

1

1 22

n
.

Rh 2RhD 8R h

1 1 1
f f f

 
 − +  

 

=  (23) 

The potential energy is derived as 

( )

L 2 R

0

0 0

h

2 R L2

x x y y xy xy

h 0 0

2

U q wdxdy

1
dxdydz.

2





−

= −

+   +   +  

 

  

 (24) 

The potential energy is re-established 

according to two unknown functions to be 

deflection w  and stress function  . Substituting 

the stress function and deflection forms in Eqs. (20) 

and (21) to the new form of the total energy, finally, 

applying the Ritz method, as  

0 1 2

U U U
0.

f f f

  
= = =

  
 (25) 

Combining Eq. (25) with the circumferentially 

closed condition (22), leads to 

2
11 0 12 1 13 2 0f f f 2q 0, +  +  − =  (26) 

2 2
21 0 22 1 23 2 24 2 26f f f f 0, +  +  +  +  =  (27) 
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31 0 32 1 33 1 2 34 2 0f f f f f q 0, +  +  +  − =  (28) 

where 
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R D 4R D
 =  = −  
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21 5 22 1 23 2
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By totalling three deflection amplitudes, the 

maximum deflection is calculated, and that is 

written by the amplitude 2f , as 
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2 2
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12 2622
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(29) 

The amplitudes 0f  and 2f  are achieved from 

Eqs. (26) and (28), then substituting these 

amplitudes into Eq. (27), one can be obtained by 

3 2
11 2 12 2 13 2 18

0
15 2 17

f f f
q ,

f

 +  +  + 
= −

 + 
 (30) 
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The postbuckling curve maxW - 0q  is 

determined by combining the maxW - 2f  and 0q - 2f  

relations. By applying 2f 0→   in Eq. (30), the upper 

buckling pressures of the stiffened shells are 

achieved as 

upper 18
0

17

q .


= −


 (31) 

The critical buckling pressures cr
0q can be 

obtained to be minimal values of upper buckling 

pressures for all buckling modes m  and n . 

4. Numerical examples 

The accuracy of the present results can be 

evaluated by the comparisons of the critical 

external buckling pressure with those of previous 

work [2]. The validations of the critical external 

pressured buckling loads of FGM cylindrical shells 

with various volume fraction indexes of FGM are 

presented in Table 1. Clearly, the accuracy of the 

present results is confirmed from these validations. 

To elucidate the theoretical results of this 

algorithm, the stiffened cylindrical shells are made 

from the copper matrix porous FG-GPLRC. The 

parameters of materials can be chosen by Wang et 

al. [22]. Due to the dominance of critical buckling 

modes, the buckling load and postbuckling curve 

below are all investigated at the critical modes. 

Table 2 investigates the critical buckling 

loads of unstiffened and stiffened porous FG-

GPLRC shells with various porosity distributions 

and porosity coefficients. Due to the porosity 

distribution mainly in the middle surface area of the 

shell, the stiffnesses of the PC1 shell is the largest 

and the largest critical buckling loads can be 

obtained in the investigated results. The very 

strong influences of stiffeners are inspected in this 

Table. As observed in Eq. (8), the elastic modulus 

of the stiffeners of the PC1 shell is the largest, 

leading to the superiority of the critical buckling 

load of the PC1 stiffened shell compared to the 

other two distributions. Additionally, the critical 

buckling loads of the shells decrease as the 

porosity coefficient increases, slightly decreasing 

for the PC1 distribution and largely for the PC2 and 

PC3 distributions. The results also show that the 

critical pressures of PC1 shells are the largest and 

those of PC2 are the smallest. 

Effects of stiffeners on the postbuckling 

responses of porous FG-GPLRC cylindrical shells 

with stiffeners are presented in Fig. 2. The 

differences between the postbuckling curves of 

orthogonally stiffened shells and unstiffened shells 

are presented in Fig. 2a, between the postbuckling 

curves of orthogonally stiffened shells and stringer 

stiffened shells are shown in Fig. 2b, and between 

the postbuckling curves of orthogonally stiffened 

shells and ring stiffened shells are presented in Fig. 

2c. Due to the complex nonlinear characteristics 

and different critical buckling modes, it can be seen 

in Figs. 2a and 2b that the load-carrying capacity of 

the shell with orthogonal and stringer stiffeners, 

respectively, is superior to that of the unstiffened 

shell when the deflection is small, however, when 

the deflection is large enough, the opposite trend 

can be observed. The large different between 

postbuckling curves can be observed for the case 

of orthogonally stiffened and unstiffened shells, 

and for the case of orthogonally stiffened and 

stringer stiffened shells, oppositely, for the case of 

orthogonally stiffened and ring stiffened shells. 

Snap-through phenomenon can be clearly 

observed for the cases of orthogonal stiffened and 

ring stiffened shells, and slightly observed for the 

case of stringer stiffened and unstiffened shells. 

Effects of distance between stiffeners, stiffener 

widths, and stiffener heights are investigated in 

Figs. 2d, e, and f, respectively. As can be seen, the 

largest effects are obtained as the change of the 
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stiffener height. 

Effects of geometrical and material 

properties on the postbuckling responses of porous 

FG-GPLRC cylindrical shells with stiffeners are 

shown in Fig. 3. Fig. 3a presents the shell length 

on the postbuckling curve of stiffened shells. 

Clearly, the critical buckling load largely decreases 

as the shell length increases. The large effects of 

porosity coefficient, porosity distribution, and GPL 

mass fraction on the postbuckling curve of the 

shells can be observed in Figs. 3b, c, and d. While 

the regular tendency of postbuckling curves with 

the same buckling modes ( ) ( )m,n 1,6= are 

observed as the porosity coefficient changes (Fig. 

3b), a complex tendency is obtained as the porosity 

distribution and GPL mass fraction change (Figs. 

3c, d) with two different buckling modes ( )m,n . 

Table 1. Comparisons of critical buckling loads cr cr
0 0q q h=  (kPa.m) of FGM cylindrical shells with 

different geometrical parameters (R h 400= , h =1mm, L 500Rh= ) 

N 0.2 1 2 5 

Shen et al. [2] 81.3248(1,11)* 71.1508(1,11) 67.3886(1,11) 63.7561(1,11) 

Present 89.2169(1,11) 75.5062(1,11) 70.4914(1,11) 65.8170(1,11) 

* The critical buckling modes ( )m,n  

Table 2. The critical buckling loads of porous FG-GPLRC stiffened cylindrical shells with different 

porosity distributions and porosity coefficients (MPa, L R 1.5= , h =0.04m, R h 100= , GPLW =0.6%, 

x y
st sth h 1.5h= = , x y

st stb b h= = , x y
st std d 5h= = ) 

 1e  0 0.1 0.2 0.3 0.5 

Unstiffened 

PC1 1.178(1,7) 1.129(1,7) 1.080(1,7) 1.030(1,7) 0.932(1,7) 

PC2 1.178(1,7) 1.059(1,7) 0.942(1,7) 0.828(1,7) 0.613(1,7) 

PC3 1.178(1,7) 1.103(1,7) 1.027(1,7) 0.950(1,7) 0.793(1,7) 

Orthogonally stiffened 

PC1 3.779(1,6) 3.687(1,6) 3.592(1,6) 3.477(1,5) 3.174(1,5) 

PC2 3.779(1,6) 3.275(1,6) 2.769(1,6) 2.262(1,6) 1.251(1,6) 

PC3 3.779(1,6) 3.538(1,6) 3.294(1,6) 3.048(1,6) 2.544(1,6) 
 

  

(a) (b) 
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(c) (d) 

  

(e) (f) 

Fig. 2. Effects of stiffeners on the postbuckling responses of porous FG-GPLRC cylindrical shells 

  

(a) (b) 
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(c) (d) 

Fig. 3. Effects of geometrical and material properties on the postbuckling responses of porous FG-

GPLRC cylindrical shells with stiffeners 
 

5. Concluding remarks 

To predict the influences of the stiffeners on 

the buckling behaviors of the porous FG-GPLRC 

cylindrical shells subjected to the external 

pressures, an analytical approach to buckling and 

postbuckling problems is established by summing 

the stiffnesses of stiffeners with those of shell skin. 

The smeared stiffener technique is applied and the 

Ritz energy method is used. Some outstanding 

remarks can be achieved as 

1) The stiffeners greatly affect the critical 

pressures and postbuckling pressure behaviors of 

the considered structures. 

2) Snap-through phenomenon is clearly 

observed for the cases of orthogonal stiffened and 

ring stiffened shells, and more slightly observed for 

the cases of stringer stiffened and unstiffened 

shells. 

3) The large effects of porosity coefficient, 

porosity distribution, and GPL mass fraction on the 

critical buckling load and postbuckling curve of the 

shells can be observed 
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