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Abstract: A semi-analytical approach for dynamic buckling of sandwich 

functionally graded graphene platelet-reinforced composite (FG-GPLRC) 

spherical shells and circular plates under dynamic thermal loads with porous 

core is reported in the present research. Based on the higher-order shear 

deformation theory (HSDT), the formulations are established, and the large 

deflection nonlinearity of von Karman with the visco-elastic model of the 

nonlinear foundation is applied. The structure's nonlinear equations of motion 

can be obtained utilizing the Euler-Lagrange equations combined with 

Rayleigh dispersion functions. The dynamic thermal load is assumed to be a 

linear function of time. Numerical studies are investigated employing the 

Runge-Kutta method to obtain the dynamic thermal behavior, and the dynamic 

criterion of Budiansky-Roth can be used to determine the critical buckling 

temperature. Significant remarks on the dynamic thermal behavior of 

structures are presented through the investigated examples. 

Keywords: Nonlinear dynamic thermal buckling; Porous core; The nonlinear 

viscoelastic foundation; The higher-order shear deformation theory (HSDT); 

Euler-Lagrange equations; Rayleigh dispersion functions. 

 

 

1. Introduction 

Spherical shells and circular plates are 

popularly utilized for different structures in 

engineering fields. Due to their popularity in 

application, various problems for these structures 

including static and dynamic nonlinear and linear 

buckling, and vibration responses are also of 

interest to many researchers. 

In the last three decades, functionally graded 

material (FGM) with its superior advantages over 

classical composite materials has attracted the 

attention of many researchers to the static and 

dynamic problems of FGM shells and plates. 

Based on first-order shear deformation plate theory 

(FSDT), the thermal and mechanical axisymmetric 

buckling problems of FGM circular plates were 

studied by Najafizadeh and Hedayati [1]. The 

thermal buckling [2, 3] and vibration [2] problems of 

FGM circular plates were investigated by utilizing a 

finite element formulation. FGM spherical shells 
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with piezoelectric layers were investigated by 

Boroujerdy and Eslami [4, 5] in thermo-mechanical 

and snap-through buckling behavior utilizing the 

Sanders kinematic nonlinearity and classical shell 

theory (CST). The static and dynamic behavior of 

FGM circular plates under thermal-mechanical 

loads was studied by utilizing the central finite 

difference method [6] and the meshfree method 

combined with isogeometric analysis [7]. The 

Galerkin [8] and Ritz energy [9, 10] methods were 

used to study the FGM spherical shells and circular 

plates in nonlinear thermo-mechanic buckling 

problems. The nonlinear dynamic snap-through 

phenomenon was investigated by Javani et al. [11] 

for FGM spherical shells utilizing the generalized 

differential quadrature method (GDQM). 

For functionally graded graphene platelet 

reinforced composite (FG-GPLRC) material, by 

employing the thermo-elastic theory of Lord-

Shulman, the transient behavior of FG-GPLRC 

spherical shells was mentioned [12] with thermal-

mechanical loads. FG-GPLRC annular plates were 

studied by Javani et al. [13] in the thermal buckling 

problem utilizing large deflection nonlinearity and 

FSDT. The vibration [14, 15] and thermal buckling 

[15] analysis of the FG-GPLRC annular plate were 

mentioned by utilizing principle of Hamilton and 

GDQM. The B-spline cubic collocation and 

Newmark methods combined with the Newton-

Raphson method were applied to investigate the 

effect of the softening foundation on the nonlinear 

dynamic behavior of the FG-GPLRC circular plates 

[16]. By applying FSDT [17], and HSDT [18, 19], 

the thermal buckling and mechanical buckling of 

spherical shells and plates were mentioned using 

the Ritz energy method. By improving the smeared 

stiffener technique, stiffened FG-GPLRC spherical 

thin shells were also considered in the nonlinear 

thermo-mechanic buckling problems [20]. The 

vibration and dynamic buckling of FG-GPLRC 

circular plate and spherical shell structures 

subjected to electro-thermo-mechanic [21] and 

thermo-mechanic [22] loads were analyzed 

employing the functions of Euler–Lagrange to 

formulate the equations of motion. 

To the best of the authors' knowledge, no 

research has focused on the dynamic thermal 

behavior of sandwich FG-GPLRC shallow 

spherical shells and circular plates with a porous 

core using HSDT and nonlinear viscoelastic 

foundation. The present paper employs the 

equations of Euler-Lagrange, and dissipation 

function of Rayleigh to derive the motion equation, 

incorporating the damping potential energy of the 

foundation. The structures are under time-

dependent thermal load, and critical thermal 

buckling loads in both static and dynamic cases, as 

well as dynamic thermal buckling behavior, are 

analyzed. The research highlights the large effects 

of porosity coefficients, material properties, 

nonlinear foundation characteristics, and 

geometric parameters on the dynamic thermal 

buckling behavior, with findings validated through 

investigation. 

2. Circular plates and spherical shells made of 

FG-GPLRC and porous core 

Consider the FG-GPLRC spherical shells 

presented in Fig. 1, with the principal radius of shell 

0R , total thickness h , base radius 0a , and the 

spherical coordinate system ( ), ,z  . For shallow 

shells, by simplifying the coordinate system to the 

polar coordinate system ( )r, ,z  with 0r R sin=  , a 

simpler problem can be acquired. For the FG-

GPLRC circular plates, applying 0R → , the 

governing formulations are exactly acquired. 

In this study, the porous core is made of the 

matrix material with the thickness pch , while the 

external and internal FG-GPLRC face sheets are 

designed with the same thickness gh . The three 

distributions of GPLs of external and internal face 

sheets are designed as [18]:  

+) The external face sheets 
pchh

z
2 2

− −
   

 
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Fig. 1. Geometrical parameters, coordinate system, and material distributions of considered structures 
 

- UD distribution: 

g gW W ,=  (1) 

- X distribution:  

pc
g g

pc

8z 2h 2h

h
W W ,

h

 + +
 
 −
 

=  (2) 

- O distribution:  

g g
p

c

c

p8z 2h 2h
2

h
W W .

h

 + +
 −
 
 

=
−

 (3) 

+) The internal face sheets 
pch h

z
2 2

 
  

 
 

- UD distribution:  

g gW W ,=  (4) 

- X distribution: 

pc
g g

pc

8z 2h 2h

h
W W ,

h

 − −
 
 −
 

=  (5) 

- O distribution:  

g g
p

c

c

p8z 2h 2h
2

h
W W ,

h

 − −
 −
 
 

=
−

 (6) 

where gW  denotes the total GPLs mass fraction.   

The extended model of Halpin-Tsai is applied 

to predict the Young modulus of the face sheets as 

[19] 

( )
( )

( )
( )

m 1 1 g m 2 2 g

g

1 g 2 g

3E 1 m n V 5E 1 m n V
E ,

8 1 n V 8 1 m V

+ +
= +

− −
 (7) 

where the GPLs volume fraction gV is determined 

by 

( )
m g

g

m g g g

W
V ,

W 1 W


=
 +  −

 (8) 

with the density denotes of GPLs and matrix are 

m  and g , and 

g m
1

g 1 m

E E
n ,

E m E

−
=

+

g m
2

g 2 m

E E
n ,

E m E

−
=

+
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g g
1 2

g g

2a 2b
m , m ,

t t
= =  

with the matrix and GPLs moduli, length, width, and 

thickness of GPLs are mE , gE , ga ,  gb ,  and gt , 

respectively. 

According to the mixture rule, the density g

, thermal expansion coefficient g , and Poisson 

ratio g , of the FG-GPLRC face sheets are 

presented as  

( )g g m g g1 V V , = −  +   

( )g g m g g1 V V , = −  +   

( )g g m g g1 V V . = −  +   

(9) 

Effective Young's modulus, thermal 

expansion coefficient, and density of porous core 

can be estimated as [18] 

( )

( ) ( )

pc m 0 pc

pc m

pc m 0 pc

E E 1 e cos z h

,

1 e 1 cos z h 1

  = −   

 = 


  =  − −  +
 

 

pc pch h
z ,

2 2
−    

(10) 

where 0e  ( 00 e 1  ) is the porosity coefficient.  

With distributions of GPLs of two face sheets 

and the porous core (PC), three material models 

are acquired as O/PC/O, X/PC/X, and UD/PC/UD 

(Fig. 1). 

By considering the thermal stresses, Hooke’s 

law for face sheets and porous core, as 

r r11 12

12 22

Q Q
T ,

Q Q 

          
= −        

         

 

rz 44 rzQ , =   

(11) 

where T  denotes the temperature difference 

between the freely thermal and the thermally 

stressed states and the reduced stiffnesses can be 

determined for FG-GPLRC face sheets as 

gg g
11 22 2

g

E
Q Q ,

1
= =

− 
 

 
 
 

g g gg g
4412 2

gg

E E
Q , Q ,

2 21


= =

+ − 
 

(12) 

and for the porous core layer 

= =
− 

pcpc pc
11 22 2

pc

E
Q Q ,

1
 


= =

+ − 

pc pc pcpc pc
4412 2

pcpc

E E
Q , Q .

2 21
 

(13) 

The axisymmetric displacements of 

sandwich FG-GPLRC structures at z  coordinate 

can be formulated utilizing the HSDT (with 

( )v 0r,z = ), as [10] 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

3

1 1,r 2

0

4z
u zu u w u ,r,z r r r r

3h

w w w ,r,z r r

 = + − + 

= +

 (14) 

where u, v  and w  denote the displacements, 

( )1u r  and ( )0w r  are the rotation and initial 

imperfect deflection. 

At a distance z  from the mid-surface, the 

strains are presented as [9] 

*
1,r

rr
* 1

*
rz rz

u

u
z

r

0

 

           
 =  +     
              

 

( )

( )1,r ,rr

2 3 1
,r

1 ,r

u w
0

u 1
z 0 z w ,

r r
u w

0

  +
   
     

− −  +    
    

 +    
 

 

(15) 

where 24 3h = , * * *
r rz, ,    are the mid-plane 

strains determined utilizing the large deflection 

nonlinearity, as 

2
,r ,r 0,r ,r*

r 0

*

* 0
rz

1 ,r

w 1
u w w w

R 2

u w ,

r R

u w



 
+ − +  

     
=   −

   
    

+  

 (16) 

By integrating Hooke's law, the forces, 

moments, higher-order moments, and shear forces 

with axisymmetric structures are formulated, as [9] 
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( )

*
r

*
r 11 12

12 22 1,r

r 11 12 11 12 1

12 22 12 22

r 11 12 11 12 1,r ,rr

12 22 12 22
1

,r

N j j 0 0 0 0

N j j 0 0 0 0 u

M 0 0 i i f f u

M 0 0 i i f f r

P 0 0 f f s s u w

P 0 0 f f s s u 1
w

r r









 
 

    
    
    
       

=    
    
    − +
    

        
− +  

  

( )

1

1

*
rz44 45r

45 55r 1 ,r

0
T,

0

0

0

c cQ
,

c cR u w

 
 
 
  

−  
 
 
 
  

     
=    

− +     

 (17) 

where 

( ) ( )
h 2pc g 2 4 6

ij ij ij ij ij
h 2

j ,i , f ,s Q 1,z ,z ,z dz
−

−

=   

( )
h 2pc pc 2 4 6

ij
h 2pc

Q 1,z ,z ,z dz
−

+  

( ) ( )
h 2

g 2 4 6
ij

h 2pc

Q 1,z ,z ,z dz, ij 1, 2 ,+ =  

( ) ( )
h 2pc g 2 4

44 45 55 44
h 2

s ,s ,s Q 1,z ,z dz
−

−

=   

( ) ( )
h 2 h 2pc gpc 2 4 2 4

44 44
h 2 h 2pc pc

Q 1,z ,z dz Q 1,z ,z dz,
−

+ +   

( )
h 2pc g g

1 g11 12
h 2

Q Q dz
−

−

 = +   

( )
h 2pc pc pc

pc11 12
h 2pc

Q Q dz
−

+ +   

( )
h 2

g g
g11 12

h 2pc

Q Q dz.+ +   

The Lagrange function is presented as 

Total T int ext . =  −  +   (18) 

The expressions of the strain energy, work 

done by the interaction of the foundation, and 

inertial energy can be determined by [21, 22] 
 

( )( ) ( )( )
ah 2 0

int r r rz rz

h 2 0

z T z T rdrdz, 

−

  =    −   +   −   +  
    (19) 

a0

3
ext 1 2 ,rr ,r 3

0

1 1
K w K w w K w w rdr,

r 2

    
 = − − + +   

    
  (20) 

 

ah 2 0

2
T ,t

h 2 0

w rdrdz,

−

 =     (21) 

where 1K ( N/m3), 2K (N/m), and 3K (N/m5) denote 

the linear Winkler and Pasternak stiffnesses, and 

nonlinear stiffness. The softening or hardening 

foundations are modeled by applying negative and 

positive values of 3K . 

3. Solutions and energy method  

The clamped boundary conditions with 

axisymmetric and immovable assumptions can be 

presented as 

1 ,r

,r 1 0

u 0, w finite, u 0, w 0 at r 0,

w 0, w 0, u 0, u 0 at r a ,

= = = = =

= = = = =
 (22) 

The displacement, rotation, and deflection 

are modeled using the polynomials satisfied the 

conditions (22), as [9] 

( ) ( )2 2
00

1 12 3
0 0

ra ra r r
u U , u U ,

a a

−−
= =  

( )
2

2 2
0

4
0

a r
w W ,

a

−
=  

(23) 

where 1U, W, U  are the amplitudes of 

displacement, deflection, and rotation, 
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respectively. 

Similar to the deflection, the polynomial form 

is chosen for the imperfect deflection 0w , as 

( )
2

2 2
0

0 4
0

a r
w h ,

a

−
=   (24) 

where   is a small imperfection size. 

 The damping potential function of the 

foundation is determined utilizing the dissipation 

function of Rayleigh, as 

a0

2
,t

0

w rdr =    (25) 

By adding the dissipation function of 

Rayleigh, the equations of Euler–Lagrange are 

presented, as [21, 22] 

Total Totald
0,

dt WW W

   
− + = 

  
  

Total Totald
0,

dt UU

  
− = 

 
  

Total Total

11

d
0.

dt UU

  
− =    

 (26) 

leads to 

( )11 13 14J U J W J W W 2 h 0,+ + +  =  (27) 

22 1 23J U J W 0,+ =  (28) 

( )31 32 1 33J U J U J U W h+ + +    

( ) ( ) ( )35 36J W W 4 h 3 J W h W 2W h+ +  + +  +   

( )37 38 33 9
3J J W hK W JW T+ + + +   

. ..
2

310 0 312J a WT 0,J W
5

 
+ −  + 


=


  (29) 

where 

( )1
11

1 22j
J

2 j
,

6

 +
= −  

( )0 22 11 1
1

2
3

0

a 19j 3j 22j

R
J ,

+ 
=

+
 

( )1
14

1 12

0

46j 82j
,

3 a
J

15


=

−
 

( ) ( )2 2 2 2
55 0 11 22 45 0 11 22 0 42 4 11 22 29c a 12s 4s 6c a 24f 8f a c 12i 4i ,J

12

  + +  − + +  + +− +
 

=  

( ) ( )2 2 2 2
55 0 11 22 45 0 11 22 0 44

2
0

3

3c a 4s 4s 2c a 4f3 34f
J

ca
,

a

3  − − −  + + +  −
 

= −  

( )22 2
31

0

0 11 1a 19j 3j 22j
J ,

105R

 + +
=  

( )12 1
3

0

1
3

2 82j 46j
J ,

315a

 − +
=  

( ) ( )2 2 2 2
0 55 11 22 45 0 11 22 44

2
0

0

3

3a c 4s 4s 2c a 4f3 4f c a 3
J ,

R

3 − − −  + + 


−


+
= −  

( ) 2
11 12 011

35 36 372
0 0

4 j j a128 j
J , J , J

5R 10 95a

+  
= = − = −  

( ) ( ) ( )
4 2 2 2 2

1 0 55 45 2 44 0 11 22 0 11 12 22
38 2

0
2

0

K a 20 3 c 2c K c 3 a 4 s s a j 2j j
J ,

4a 5R

3 3 − + −  +  − 
 

− −  +  + +
= −  

39 1J 4 3,=   

2
0 1

310
0

2a
J ,

3R

 
= −  

h 2 h 2 h 2pc pc

312 g pc g
h 2 h 2 h 2pc pc

J dz dz dz.
−

− −

=  +  +   



JSTT 2024, 4 (4), 43-54                                                       Nguyen et al 

 

 
49 

By solving Eqs. (27) and (28), the amplitudes 

U  and 1U  are acquired, then, substituting them 

into Eq. (29), leads to 

( ) ( )31 11 32 21 38 39J J D J TW J h WD + + +  +  

( ) ( )33 11 34 21J D J D W h W+ +  +  

( )31 12J D W 2 h W+  +  

( ) ( ) ( )33 12 36J D J W 2 h W h W+ +  +  +  

( )3
37 353J J W W hK 4 3W+ + +   

. ..
2

310 0 312J a W WT J 0
5

 
+ −  + = 

 
  (30) 

where 

13 2314
11 12 21

11 11 22

J JJ
D D D

J J
, , .

J
= − = − = −  

For the perfect plates ( )00, R = → , by 

applying W 0→  in Eq. (30), the static thermal 

buckling temperature expression is presented by 

31 11 32 21 38
cr

39

J D J D J
T .

J

+ +
 = −  (31) 

The dynamic thermal load is applied by 

T t =   in this paper, where   (K/s) is the loading 

speed. Eq. (30) is solved using the Runge-Kutta 

method, and the criterion of Budiansky-Roth is 

used to predict the dynamic thermal buckling loads. 

On the buckling region of the dynamic curve, the 

thermal buckling loads are chosen at the inflection 

point, i.e. 

cr

2

2
T T

d W
0.

d T
 =

=


 (32) 

4. Results and discussions 

4.1. Validation 

In Table 1, the critical static buckling loads of 

FGM circular plates from the present results are 

compared with those from previous studies [1, 3, 

17]. The adjacent equilibrium criterion with FSDT 

was used by Najafizadeh and Hedayati [1], the 

isogeometric finite element solutions with HSDT 

were applied by Loc et al. [3], and the Galerkin 

method, combined with FSDT, was employed by Tu 

et al. [17]. As observed, good agreements are 

achieved in these comparisons. 

4.2. Numerical examples and discussions 

By applying the results of Wang et al [14], the 

material properties of graphene platelet and cooper 

matrix, are acquired for the studied results in this 

paper. 

The critical thermal buckling loads of the 

sandwich FG-GPLRC circular plates with porous 

core for static and dynamic cases are reported in 

Table 2. It is evident that the dynamic thermal 

buckling loads of the plates surpass their static 

ones. Furthermore, as the loading speed rises, the 

dynamic thermal buckling load also increases. 

Among the plates analyzed, the X/PC/X plate 

exhibits the highest thermal buckling load 

compared to those with other distribution plates. 

Table 2 highlights a notable trend: the critical 

thermal load changes significantly with change in 

porosity coefficient. Interestingly, the critical 

thermal buckling loads of circular plates rise as the 

porosity coefficient increases. This phenomenon 

can be explained simply. While a higher porosity 

coefficient decreases the stiffness of the plates, it 

also lowers the thermal expansion coefficient of the 

core, which in turn reduces the thermal edge 

reaction. 

Fig. 2 indicates the effects of geometry, GPLs 

distributed models and GPLs mass fraction on the 

dynamic responses of plates and shells under 

linear time-dependent thermal loads. The region of 

dynamic buckling is recognized for perfect circular 

plates (Figs. 2a, b), and conversely for spherical 

shells (Fig. 2c, d). The buckling region slopes of the 

GPLs distributed models do not differ significantly 

as in Fig. 2a. The critical dynamic buckling 

temperatures are significantly improved as the 

mass fraction of GPLs increases (Fig. 2b). 

Similar to Fig. 2, the dynamic thermal 

buckling region is recognized for perfect circular 

plates only (Figs. 3a and c). As can be seen, when 

the porosity coefficient and core thickness 

increase, the critical dynamic thermal buckling 
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temperatures and the buckling area amplitudes of 

the perfect plate also increase as in Figs. 3a and c. 

As for the spherical shell, when the porosity 

coefficient and core thickness increase, the 

dynamic thermal postbuckling strengths increase 

as in Fig. 3b and d. 

Table 1. Validation of the critical static buckling loads crT (K) of FGM circular plates 

 0h a  

 0.05 0.04 0.03 0.02 0.01 

Najafizadeh and Hedayati [1] 146.8150 94.0810 53.0290 23.6030 5.9060 

Loc et al. [3] 144.9953 93.4005 52.8191 23.5719 5.9093 

Tu et al. [17] 147.0435 94.4065 53.2351 23.7019 5.9318 

Present 153.4901 99.1664 55.8605 24.6894 6.2178 

Table 2. Dynamic critical thermal buckling load crT  of sandwich FG-GPLRC circular plates (K, gW

=0.5%, h =0.02m, pch 0.6h= , 0a 20h= ,  =0,  =0 kN.s/m3, 1K = 107 N/m3, 2K = 105 N/m,                

3K = 0 MN/m5) 

Type 0e  Static 
Dynamic 

 = 100 (K/s)  = 200 (K/s) 

UD/PC/UD 

0 164.83 169.10 171.74 

0.3 180.26 184.80 187.44 

0.5 192.60 197.40 200.60 

X/PC/X 

0 165.09 169.80 172.86 

0.3 180.60 185.20 187.94 

0.5 193.00 197.40 200.00 

O/PC/O 

0 164.52 169.60 171.48 

0.3 179.95 184.30 188.36 

0.5 192.30 196.70 199.40 

 

  

(a) (b) 



JSTT 2024, 4 (4), 43-54                                                       Nguyen et al 

 

 
51 

  

(c) (d) 
Fig. 2. Effects of geometrical, GPLs distributed models and GPLs mass fraction on the dynamic thermal 

responses of plates and shells under linear time-dependent thermal loads 

  

(a) (b) 

  

(c) (d) 

Fig. 3. Effects of core thickness and porosity coefficient on the dynamic thermal responses of plates and 

shells under linear time-dependent thermal loads 
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(a) (b) 

  

(c) (d) 

Fig. 4. Effects of the nonlinear foundation stiffness, imperfection size, and loading speed on the dynamic 

thermal responses of plates and shells under dynamic temperature changes 

Figs. 4a and b present the effect of nonlinear 

foundation stiffness on the dynamic thermal 

responses of plates and shells. The small change 

in critical dynamic buckling temperature is 

observed corresponding with the change of 

nonlinear stiffness of foundation, however, the 

amplitude of the buckling area of the perfect plate 

changes significantly as in Fig. 4a. Fig. 4b shows 

that the dynamic thermal postbuckling strengths of 

the spherical shells increase gradually with positive 

nonlinear stiffness 3K  and decrease progressively 

with negative nonlinear stiffness 3K . 

The effects of imperfection sizes and loading 

speeds on the dynamic thermal curves of the 

circular plates are presented in Figs. 4c and d. In 

Fig. 4c, as observed, the dynamic thermal buckling 

region is recognized with the perfect circular plate 

0 = , and oppositely for the imperfect circular 

plate 0.1, 0.2 = . The critical dynamic buckling 

temperature and the buckling area amplitude of the 

plate significantly improve with larger loading 

speeds as shown in Fig. 4d. 

5. Conclusion 

 The nonlinear dynamic thermal buckling 

behavior of the sandwich FG-GPLRC shallow 

spherical shells and circular plates with porous 

core subjected to linear time-dependent 

temperature changes is investigated in this paper. 
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The equations of motion of structures are 

formulated based on the Euler-Lagrange equations 

and HSDT. The studied results give significant 

points as 

1) The dynamic thermal buckling region is 

recognized with the perfect circular plates 

and oppositely for the spherical shells and 

imperfect circular plates. 

2) When the porosity coefficient and core 

thickness increase, the buckling area 

amplitude and critical dynamic thermal 

buckling load also increase for the perfect 

circular plates, and the dynamic thermal 

postbuckling strengths increase for the 

spherical shells. 

3) Nonlinear foundation stiffness 3K  variations 

also significantly influence the dynamic 

thermal responses of plates and shells under 

linear time-dependent thermal loads. 
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