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Abstract: This paper proposes an analytical solution for the nonlinear buckling 

behavior of functionally graded carbon nanotube-reinforced composite (FG-

CNTRC) sandwich plates under axial compressive and external pressure loads 

is analytically examined in this paper. The considered plates are designed with 

the multi-layer corrugated FG-CNTRC core and face sheets. The CNT 

distribution laws of the multi-layer corrugated core are proposed to ensure the 

material continuity between FG-CNTRC face sheets and multi-layer corrugated 

core. Classical plate theory (CPT) with geometrical nonlinearities is utilized to 

formulate the fundamental expressions. In addition, the Ritz energy method is 

used to achieve the expressions of compression and pressure postbuckling 

curves, and axial critical buckling loads. The investigations numerically display 

the influences of multi-layer corrugated core, material, and geometrical 

properties on the nonlinear buckling and postbuckling behavior of plates. 

Keywords: Ritz energy method, Classical plate theory, Functionally graded 

carbon nanotube-reinforced composite, Buckling and postbuckling, Multi-layer 

corrugated core. 

 

 

1. Introduction 

Over the past twenty years, the investigation 

of the mechanic behavior of beams, plates, and 

shells manufacted by advanced sandwich 

composites has been an active research focus. 

The researches of the structural behavior 

composed of soft-core sandwich materials, with 

load-bearing surface layers made of advanced 

composites such as functionally graded material 

(FGM), has attracted considerable interest from 

researchers worldwide, with various methods 

being applied. Using classical plate theory (CPT) 

combined with von Karman nonlinear geometrical 

terms, the Galerkin method, and the stress 

approach, Singh and Harha [1] analyzed the 

nonlinear dynamic responses of FGM sandwich 
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plates placed on elastic foundation in a thermal 

environment. Sobhy [2] used an advanced plate 

theory with shear strains to study the vibration and 

buckling behavior of FGM sandwich plates in a 

hygrothermal environment. The thermal buckling 

behavior of different FGM sandwich plate 

configurations was examined by Zenkour and 

Sobhy [3]. Subsequently, by applying the improved 

mesh-free method with radial point interpolation, 

Vuong and Lee [4] analyzed the thermal buckling 

behavior of FGM sandwich plates. For the shell 

problems, stiffened FGM sandwich doubly curved 

shells were investigated by Dong and Dung [5] in 

nonlinear vibration problems, using Lekhnitskii’s 

smeared stiffener technique, higher-order shear 

deformation theory, Galerkin method, and Runge-

Kutta method, with four material types. Nam et al. 

[6, 7] studied the buckling and postbuckling 

behavior of porous cylindrical shells with FGM 

coatings, as well as FGM sandwich cylindrical 

shells in a thermal environment, stiffened by spiral 

stiffeners, under torsional loading. The Galerkin 

method combined with the closed circumferential 

condition of the cylindrical shell was applied, and 

the selected solution of deflection was chosen in 

the three-term form, allowing for the analysis of 

three stages: pre-buckling, linear buckling, and 

nonlinear buckling. 

In recent decades, due to their exceptional 

mechanical, thermal, and electrical properties, 

carbon nanotube (CNT) has attracted significant 

attention. These attributes make CNTs highly 

promising for use in advanced composite 

structures, where their ability to enhance strength 

and stiffness while maintaining lightweight 

properties. Consequently, research efforts have 

increasingly focused on optimizing the 

performance of CNT-reinforced composites. 

Moreover, their high aspect ratio further positions 

CNTs as ideal filler materials for advanced 

composite. Expanding on the concept of 

functionally graded materials (FGMs), Shen [8] 

introduced an advanced composite material, which 

is functionally graded carbon nanotube-reinforced 

composite (FG-CNTRC). In this composite, an 

isotropic matrix is reinforced by CNTs, continuously 

distributed along the thickness direction, allowing 

for optimized structural responses and improved 

performance based on specific design 

requirements. Motivated by this suggestion, 

sequential works relating to the static stability of 

FG-CNTRC structures have been performed. The 

linear buckling problems of FG-CNTRC plates 

subjected to mechanic loads was investigated in 

studies [9, 10] using numerical and semi-analytical 

methods, respectively. Shen and Xiang [11] and 

Liew et al. [12] explored the axially compressed 

buckling and postbuckling behavior of FG-CNTRC 

cylindrical panels. By considering temperature-

dependent material properties and transversely 

flexible core, Mohammadimehr and Mostafavifar 

[13] examined the free vibrations of FG-CNTRC 

sandwich plates in magnetic field, by employing 

strain gradient theory. In thermally postbuckled 

state, Shen et al. [14] investigated the vibrations of 

FG-CNTRC sandwich plates on elastic foundation. 

Di Sciuva and Sorrenti [15] studied the free 

vibration and buckling of FG-CNTRC sandwich 

plates utilizing the extended refined zigzag theory. 

Based on higher-order shear deformation theory, 

FG-CNTRC sandwich annular plates were 

investigated by Ansari et al. [16] in nonlinear 

axisymmetric vibrations. By using the Carrera 

unified formulation, Beni [17] conducted free 

vibrations of annular sector FG-CNTRC sandwich 

plates. The vibrations of doubly curved smart FG-

CNTRC sandwich shells with porous cores were 

presented by Setoodeh et al. [18], and Wang et al. 

[19] investigated similar behavior with solid cores. 

Besides FG-CNTRC structures, functionally 

graded graphene-reinforced composite (FG-GRC) 

sandwich structures are also a topic of great 

interest currently. It can be observed that there are 

very few studies on this structure worldwide; for 

example, the nonlinear vibration was investigated 

by Wang and Shen [20] for FG-GRC sandwich 
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plates in thermal environment. 

For corrugated structures, many authors 

worldwide have researched using various theories 

and approaches. Samanta and Mukhopadhyay 

[21] analyzed the mechanical response of 

trapezoidal corrugation plates, taking into account 

both bending and extensional stiffness. Peng et al. 

[22] proposed an equivalent elastic property theory 

for sinusoidal and trapezoidal corrugated plates 

using the meshless Galerkin method. The 

corrugated composites with special mechanic 

properties were applied for flexible wing structures 

as indicated by Yokozeki et al. [23]. More recently, 

Hieu et al. [24] examined the elastic stability of 

isotropic trapezoidal corrugated metal piping 

without elastic foundations using Donnell shell 

theory and the homogenization approach of 

Samanta and Mukhopadhyay [21]. Kavermann and 

Bhattacharyya [25] conducted experimental 

studies on the static annalysis of corrugated 

plywood sandwich cores, Shaban and Alibeigloo 

[26] employed the energy method to solve the 

three-dimensionally elastic problem of sandwich 

panels with corrugated core. Two-layer corrugated 

sandwich panels were mentioned by Shu et al. [27] 

using the crashworthiness analysis with crushing 

loads, and Zamanifar et al. [28] utilized the finite 

strip method to investigate the dynamic and static 

behavior of corrugated-core sandwich plates. By 

applying the homogenization technique of Xia et al. 

[29], Nam et al. [30] studied the nonlinear thermo-

elastic stability of FG-CNTRC sandwich cylindrical 

shells with corrugated core under radial pressure, 

My et al. [31] explored the nonlinear buckling 

responses of FG-GRC sandwich toroidal shell 

segments in thermal environment with corrugated 

cores under lateral pressure. 

An analytical approach for buckling and 

postbuckling behavior of FG-CNTRC sandwich 

plates with a corrugated FG-CNTRC core, utilizing 

CPT is introduced in this paper. Through the 

application of the Ritz energy method, the axial 

critical buckling loads and postbuckling curves of 

the plates are explicitly derived. The influence of 

material and geometric parameters of the FG-

CNTRC face sheets and the corrugated core on 

the buckling and postbuckling performance is 

illustrated by numerical examples. 

2. Theoretical formulations 

This paper investigates FG-CNTRC 

sandwich plates with a multi-layer corrugated FG-

CNTRC core subjected to axial compression 0P  

and external pressure q  in a thermal environment 

T . The geometrical and material properties, and 

coordinate system of the plates, corrugated FG-

CNTRC core, and FG-CNTRC face sheets can be 

referred to in Figs. 1 and 2. The corrugated core is 

considered to be in the trapezoidal and round 

forms.  The length and width of the plates are 

denoted as a  and b , respectively. The thickness 

of the FG-CNTRC face sheet is represented by 

f ch ,  h ; and h  denote the core thickness and the 

total thickness, respectively. c and t  represent the 

half-period and the wall thickness of the 

corrugation, respectively. For round corrugations, r  

represents the radius of the half-corrugation, and 

d  denotes the half-length of the line connecting two 

adjacent half-corrugations. In the case of 

trapezoidal corrugations,   and f  represent the 

trough angle and the half-amplitude of the 

corrugation, respectively.  

 

Fig. 1. CNT distributions in corrugated core and face sheets 
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Fig. 2. Coordinate systems and geometry of FG-CNTRC sandwich plates and corrugated FG-CNTRC 

cores 

The CNTs in the face sheets can be designed 

in the longitudinal (x-directional CNT face sheets, 

0-layer) or transversal (y-directional CNT face 

sheets, 90-layer) directions of the plates and the 

CNTs in the corrugated core are always in the 

same direction as the corrugations, while, the 

corrugated may be in the longitudinal (0-layer) or 

transversal (90-layer) directions of the plates. Four 

combination cases of CNT directions are 

considered as follows: 0/0/90/0/0 plates, 

0/90/0/90/0 plates, 90/0/90/0/90 plates, 

90/90/0/90/90 plates. 

The upper face sheet chh
z

2 2

 
−   − 
 

 is 

reinforced by CNT, with distributions in the 

thickness according to the following functions 

UD law: 

*
CNT CNTV V ,=  (1) 

FG-X law: 

*
CNT CNT

c

c

8z 2h 2h
V

h h
V ,

+ +
=

−
 (2) 

FG-O law: 

c *
CNT CNT

c

8z 2h 2h
2

h
V

h
V ,

 + +
= − 
 −   

(3) 

and for the lower face sheet ch h
z

2 2

 
  

 
, CNT 

volume fractions are distributed according to the 

following functions  

UD law: 

*
CNT CNTV V ,=  (4) 

FG-X law: 

*
CNT CNT

c

c

8z 2h 2h
V

h h
V ,

− −
=

−
 (5) 

FG-O law: 

c *
CNT CNT

c

8z 2h 2h
2

h
V

h
V ,

 − −
= − 
 − 

 (6) 
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Additionally, the CNT volume fractions for the 

corrugated core 
t t

2 2

 
−    
 

 are proposed to be 

linearly distributed through the thickness of the 

core wall according to the following functions, as 

UD law: 

*
CNT CNTV V ,=  (7) 

FG-X law: 

*
CNT CNT

4

t
V V ,

 
=  
 

 (8) 

FG-O law: 

*
CNT CNT

4
2

t
V V .

 
= −  
 

 (9) 

where   is the thickness direction axis of 

the corrugation wall in the local coordinate systems 

of corrugation. 

To forecast the elastic constants, the 

extended mixture rule is adopted. The formulations 

of Poison ratio, shear modulus, and Young’s moduli 

are presented by 

CNT
11 m m 1 CNT 11E V E V E ,= +   

CNT
2 m 22

22 CNT
CNT m m 22

E E
E ,

V E V E


=

+
 

CNT
3 m 12

12 CNT
m CNT m 12

G G
G ,

G V V G


=

+
 

* CNT
12 m m CNT 12V V , =  +   

(10) 

where CNTV  and mV   (satisfies the relation of 

CNT mV V 1+ = ) denotes the CNT and matrix 

volume fractions. The CNT Young’s moduli and 

shear modulus are defined by CNT
11E ,  CNT

22E and

CNT
12G . The corresponding attributives for the 

matrix are denoted by mE  and mG ; CNT
12  and m   

are the CNT and matrix Poisson’s ratios, and the 

CNT efficiency parameters ( )j j 1,  2,  3 =   are 

determined by Molecular Dynamics (MD) 

emulations [32-34].  

In the x - and y -directions, the thermal 

expansion coefficients are determined as 

CNT
11 CNT 11 m mV V , =  +   

(11) ( )CNT CNT
22 12 CNT 221 V = +    

( )m m m 12 111 V ,+ +   −    

where the CNT and matrix coefficients of thermal 

expansion are denoted by CNT
11 , CNT

22  and m , 

respectively. 

For the orthotropic plates, Hooke’s law can 

be presented by 

x x 1111 12

y 12 22 y 22

66xy xy

Q Q 0

Q Q 0 T ,

0 0 Q 0

        
          =  −                             

 (12) 

where ijQ  is the reduced stiffnesses, determined by 

11 22
11 22

21 12 21 12

E E
Q , Q ,

1 1
= =

−   −  
 

21 11
12 66 12

21 12

E
Q , Q G .

1


= =

−  
 

The force and moment resultants of FG-

CNTRC plates with corrugated FG-CNTRC cores 

are obtained by integrating Hooke’s law in the 

thickness direction and combining with the 

homogenization technique of Xia et al. [29], 

presented by 
 

0
xx

1x11 12
0

y y 1y12 22

0
xy 66 xy

11 12x ,xx

12 22y
,yy

66xy
,xy

N A A 0 0 0 0
N A A 0 0 0 0

N 0 0 A 0 0 0 0
,

0 0 0 D D 0M 0w
0 0 0 D D 0M 0w
0 0 0 0 0 D 0M 2w

                           
= −      

−      
      

−      
         −   

 (13) 
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where the stiffnesses of FG-CNTRC plates ijA  and 

ijD  are determined by summing the stiffnesses of 

two FG-CNTRC face sheets and the multi-layer 

corrugated FG-CNTRC core, presented as 

( ) ( )upper upper
ij ij ij ijA ,D A ,D=  

( ) ( )[1]c [1]c [2]c [2]c
ij ij ij ijA ,D A ,D+ +  

( ) ( )[3]c [3]c lower lower
ij ijij ijA ,D A ,D ,+ +  

(14) 

( ) ( )upper upper
1x 1y 1x 1y, ,  =    

( ) ( )[1]c [1]c [2]c [2]c
1x 1y 1x 1y, ,+   +    

( ) ( )[3]c [3]c lower lower
1x 1y1x 1y, , ,+   +    

for the face sheets 

( ) ( )

c

upper upper up 2
ij ij i

h

2

h

2

jA ,D Q 1,z dz,

−

−

=   

( ) ( )
c

lower lo

h

2

wer lo 2

h

2

ij ij ijA ,D Q 1,z dz,=   

( ) ( )i, j 1,2,6 ,=  

( )

c

upper up up up up
1x 11 11

2

12

h

2

h

22Q Q dz,

−

−

 =  +   

( )
c

lower lo lo lo lo
1x 11 11 12 2

h

2

h

2

2Q Q dz, =  +   

( )

c

upper up up up up
1y 12 11

2

22

h

2

h

22Q Q dz,

−

−

 =  +   

( )
c

lower lo lo lo lo
1y 12 11 22 2

h

2

h

2

2Q Q dz, =  +   

and for 3 layers of corrugated core, the 

components of the stiffness matrix 

[1]c [2]c [3]c [1]c [2]c [3]c
ij ij ij ij ij ijA ,A ,A ,D ,D ,D  and 

[1]c [2]c [3]c [1]c [2]c [3]c
1x 1x 1x 1y 1y 1y, , , , ,       are defined as 

follows 

-  for x-directional corrugated core 

k c

22
1 2

1111

2c
A ,

I I

A D

   =

+

 

(15) 

k c
12k c 22

12
11

A A
A ,

A

  
   =  

2 k c
12k c 11 22 12 12

11
11 11

A Al A A A
A ,

c A A

  
   −

= +  

k c
6666

c
A A ,

l

   =  

2 c
1122

c
D D ,

l

   =  

2 c 2 c12

12 22
11

D
D D ,

D

      =  

( )2 c
22 2211 2 1

1
D ,I A I D

2c

   = +  

2 c
6666

l
D D ,

c

   =  

h hc c
6 2

1 c 3 c*c 2 *c 2
ij ijij ij

h hc c
2 6

D Q z dz, D Q z dz,

−

      

−

= =   

k c k c k cc c
11 221x 11 12A A ,

           =  +   

k c k c k cc c
11 221y 12 22A A ,

           =  +   

( )k 1,2,3 ,=  

- for y-directional corrugated core 

k c

11
1 2

1111

2c
A ,

I I

A D

   =

+

 

(16) 
k c

12k c 11
12

11

A A
A ,

A

  
   =  

2 k c
12k c 11 22 12 12

22
11 11

A Al A A A
A ,

c A A

  
   −

= +  



JSTT 2024, 4 (4), 55-70                                                     Vu et al 

 

 
61 

k c
6666

c
A A ,

l

   =  

2 c
1111

c
D D ,

l

   =  

2 c 2 c12

12 11
11

D
D D ,

D

      =  

( )2 c
22 2222 2 1

1
D ,I A I D

2c

   = +  

2 c
6666

l
D D ,

c

   =  

h hc c
6 2

1 c 3 c*c 2 *c 2
ij ijij ij

h hc c
2 6

D Q z dz, D Q z dz,

−

      

−

= =   

k c k c k cc c
11 221y 11 12A A ,

           =  +   

k c k c k cc c
11 221x 12 22A A ,

           =  +   

( )k 1,2,3 ,=  

in which 

- for trapezoidal corrugations 

tc c ,=  

1 1
l 2f c,

sin tan

 
= − + 

  
 

1

cos
I 8f 2c,

3sin


= − +


 

3
2

2

4ff
I f ,2c 4

3sintan

 
= +− 

 
 

- for round corrugations  

l 2d r ,= +   

rc c 2r,= =  

1I r ,=   

3
2 3 2

2

4d
I 2 d r r 8dr .

3
=  +  + +  

and   

( ) ( )

t

2

c 2
ij ij ij

t

2

A ,D Q 1, d ,

−

=    

 

 

 

 

( ) ( )

t

2

c c
11 22 11 22

t

2

1
, , d ,

t
−

  =     

 

 

 

 

(17) 
2 c*c

ij ij3

c

12
Q D ,

h

3

  =
 
 
 

 

Note that: The stiffnesses 
2 c

ijD
    in Eq. (17) 

are determined from Eq. (15) for 1st and 3rd for y-

directional corrugated cores, oppositely, from Eq. 

(16) for 1st and 3rd for x-directional corrugated 

cores. 

The compatibility equation of the plates 

according to the CPT is also applied as [30] 

0 0 0
xy,xy y,xx x,yy− +  +   

*
,xx ,xx ,yy ,xx ,yyw w w w w= − − −  

2 * *
,xy ,xx ,yy ,xy ,xyw w w 2w w .+ − +  

(18) 

The stress function ( )f x,y  is introduced, with 

the following conditions 

xy ,xy x ,yy y ,xxN f , N f , N f .= − = =  (19) 

The boundary conditions of the plates are 

assumed to be simply supported and freely 

movable edges, as 

x xyx 0,a x 0,a x 0,a
M 0, w 0, N 0,

= = =
= = =  

x 0x 0N N hP ,= = −  

xy yy 0,by 0,b y 0,b
N 0, w 0, M 0,

== =
= = =  

y 0yN N 0,= =  

(20) 

In this case, the approximate solutions of 

deflection and imperfection are presented in the 

forms, as 

w W sin x sin y,=    

*w hsin x sin y,=     
(21) 

where
m n

,
a b

 
 =  = ; m  and n  are the buckling 

modes. 

The compatibility equation (18) is rewritten by 
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( )* * *
22 ,xxxx 12 66 ,xxyyA f 2A A f+ +  

*
,xx ,yy ,xx ,xy ,xyw w w 2w w+ + −  

* * * 2
11 ,yyyy ,xx ,yy ,xx ,yy ,xyA f w w w w w 0.+ + + − =  

(22) 

where 

11

* 22
2
222

11

1A A
,

A

A
A

−
=

11

* 12
1

22

2 2
12

A

A
A ,

A A

−

−
=  

11

* 11
2
222

22

1A A
,

A

A
A

−
=  

*
66

66

1
A ,

A
=  

By substituting the solution forms Eq. (21) 

into the compatibility equation (22), the stress 

function can be derived and expressed as follows 

1 2f f cos2 x f cos2 y=  +   

2 2
0y 0x

3

N x N y
f sin x sin y .

2 2
+   + +  

(23) 

The strain energy of the plates and the work 

done by the external loads are expressed by 
 

( ) ( )

h

b a2

in y y 22 x x 11 xy xy

h 0 0

2

1
U T T dxdydz

2
−

 =   −   +   −   +  
     (24) 

( )
b a b a b a

3

ext 1 ,yy ,xx 2 3 0x ,x

0 0 0 0 0 0

1 w
U w wK w w K K dxdy+ qwdxdy N u dxdy

2 2

  
= − − + + +      
       (25) 

 

where 1 2K ,K are the linear foundation stiffnesses 

and 3K  is the stiffness of the nonlinear foundation. 

The total potential energy is established by 

total in extU U U .= −  (26) 

The Ritz energy method is applied, as 

totalU
0,

W


=


 (27) 

leads to 

11 12

4
H W H W W h

3

 
+ +  

 
 

( ) ( )13H W 2h W h W+  +  +  

( )3
14 3 15 16 0+H W K H q H WP h 0h+ − + =  

(28) 

where 

( ) ( )

( ) ( )

* 2 4 2 * * 2 2
22 31 11 31 12 66 66

11
* 2 4 2 2
11 31 2

2

2

1

2 1

A X D X 2A A 2D 4D
ab

H
4 A X D K K

,
+  + + + +  

=

+ + 

  
  
 

+  + + 
 



 

( )* * *
22 12

4 2 2 4n m 31
12 11 11 1 12 21 1

4 X
H X X X XA A A ,

 
= −  + +   + 


 
 

 

( )2 4 * 2 4 *
13 11 22 21 11H 16ab X A X A ,=  +   

2
m n

14 15 16

9ab ab
H , H , H .

4
    

64

  
= = − =


 

For the case of a plate under axial 

compressive load 0P , from equation (28), can 

obtain 
 

( ) ( )

( )

2 3 15
12 13 14 3

0
16

2
11

H q4
W H Wh W H Wh 2 W W H WH h

3

H

h
K

P
h W

 
+ +  +  +  + + + 

 
=

 +
 

(29) 

For the perfect plates, the static buckling 

loads are achieved by applying W 0,→  and 0, =   

as 

upper 11
0

16

H
P

H h
=  (30) 

In the case of the plate under external 

pressure q , from equation (28), can obtain 
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( ) ( ) ( )2 3
12 13 14 3 16

1

2
11 0

5

4
W H Wh W H Wh 2H hW W PH

h

W K H h W
3

q
H

 
+ +  +  +  + +  + 

 
= −

−

 (31) 

 

3. Results and disscussions 

3.1. Validation 

This section validates the critical axial 

buckling compression of FG-CNTRC plates 

calculated using the present method by comparing 

it with the results of Shen and Zhu [35] (refer to 

Table 1). As observed, the results show strong 

agreement, with the present values aligning closely 

with the previous ones. 

3.2. Numerical examples and disscussions 

For the equivalent non-corrugated plates, the 

thickness of the non-corrugated core can be 

determined with the volumes of the equivalent non-

corrugated cores being equal to those of the 

corrugated cores, respectively, leading to the 

volume fractions of CNT and matrix of these two 

cases being the same. 

Table 2 presents the effects of CNT volume 

fraction, directions of CNT in the face sheets and 

the corrugated core, and distribution types of CNT 

on the critical buckling compressive load of FG-

CNTRC multilayer corrugated core plates. 

Naturally, the critical load is smallest when the CNT 

volume fraction *
CNTV 0.12=  and largest when 

*
CNTV 0.28= , for all directions and distribution 

types of CNT. Notably, the 0/0/90/0/0 plates and 

0/90/0/90/0 plates show higher critical loads than 

the other two. Although the differences in critical 

buckling loads among the plates with distribution 

types UD, FG-X, and FG-O are not significant, FG-

X plates still show slightly higher critical loads than 

corresponding UD and FG-O plates. Additionally, 

when comparing the two forms of corrugated 

cores, the critical buckling loads of plates with 

round corrugations tend to have a higher critical 

buckling load than those with trapezoidal 

corrugations.  

Table 1. Comparisons of critical axial buckling compressive load cr 11
0

16

H b
P

H
=  (in kN) of  FG-CNTRC 

plates (b h 100= ,h =2mm, a b 1= , m=1, n=1) 

( )T K  *
CNTV  

Shen and Zhu [35] Present 

UD FG-X UD FG-X 

300 

0.12 3.34 4.87 3.39 4.93 

0.17 4.96 7.23 5.00 7.27 

0.28 7.76 11.41 7.88 11.65 

500 

0.12 3.18 4.64 3.24 4.74 

0.17 4.71 6.90 4.76 6.98 

0.28 7.43 10.92 7.58 11.24 

700 

0.12 3.03 4.44 3.12 4.60 

0.17 4.49 6.59 4.58 6.77 

0.28 7.12 10.44 7.36 10.96 
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Table 2. Effects of different directions of CNT in the face sheets, of CNT in the corrugated core on the 

critical buckling compressive loads of plates with multi-layer corrugated FG-CNTRC core (MPa)               

( a b 100h= = , fh =3mm , ch 15mm= , f 2mm= , tc 4f= , 4 =  , r 1.4mm= , rc 2r= , d 0.6mm= , 

t 1mm= , T 400K,=  3
1K 0 MN m ,= 2K 0 MN m,=  5

3K 0 MN m= ) 

 

Directions of 

CNT 

Trapezoidal corrugated cores Round corrugated cores 

UD FG-X FG-O UD FG-X FG-O 

*
CNTV 0.12=  

0/0/90/0/0 6.06 (1,1)* 6.10 (1,1) 6.04 (1,1) 6.31 (1,1) 6.34 (1,1) 6.28 (1,1) 

0/90/0/90/0 6.06 (1,1) 6.10 (1,1) 6.04 (1,1) 6.31 (1,1) 6.34 (1,1) 6.28 (1,1) 

90/0/90/0/90 5.10 (2,1) 5.14 (2,1) 5.07 (2,1) 6.04 (2,1) 6.08 (2,1) 6.01 (2,1) 

90/90/0/90/90 2.29 (2,1) 2.31 (2,1) 2.29 (2,1) 2.38 (2,1) 2.40 (2,1) 2.38 (2,1) 

 *
CNTV 0.17=  

0/0/90/0/0 8.92 (1,1) 8.97 (1,1) 8.88 (1,1) 9.27 (1,1) 9.33 (1,1) 9.24 (1,1) 

0/90/0/90/0 8.92 (1,1) 8.97 (1,1) 8.88 (1,1) 9.27 (1,1) 9.33 (1,1) 9.24 (1,1) 

90/0/90/0/90 7.60 (2,1) 7.67 (2,1) 7.57 (2,1) 8.97 (2,1) 9.05 (2,1) 8.93 (2,1) 

90/90/0/90/90 3.51 (2,1) 3.54 (2,1)  3.51 (2,1) 3.64 (2,1) 3.68 (2,1) 3.65 (2,1) 

 *
CNTV 0.28=  

0/0/90/0/0 14.17 (1,1) 14.28 (1,1) 14.13 (1,1) 14.75 (1,1) 14.86 (1,1) 14.71 (1,1) 

0/90/0/90/0 14.17 (1,1) 14.28 (1,1) 14.13 (1,1) 14.75 (1,1) 14.86 (1,1) 14.71 (1,1) 

90/0/90/0/90 11.70 (2,1) 11.86 (2,1) 11.69 (1,1) 13.92 (2,1) 14.10 (2,1) 13.90 (2,1) 

90/90/0/90/90 4.79 (3,1) 4.96 (3,1) 4.92 (3,1) 5.04 (3,1) 5.21 (3,1) 5.17 (3,1) 

* The buckling mode ( )m,n  

Table 3 presents a significant difference in 

critical buckling compressive loads between 

corrugated FG-CNTRC and equivalent non-

corrugated cores at different CNT volume fractions 

and distribution types, for both trapezoidal and 

round corrugation forms. As the CNT volume 

fraction increases, the load capacity of both core 

types increases; however, the critical buckling 

compressive loads of plates with corrugated core 

consistently show much higher values. Moreover, 

the differences between critical buckling loads of 

plates with corrugated and with equivalent non-

corrugated cores are significant, ranging from 

56.47% to 72.19%. The plates with trapezoidal 

corrugated cores with FG-X distribution show the 

highest critical buckling load in all three CNT 

volume fraction values. In addition, the round 

corrugated core also improves the critical buckling 

load of plates but is slightly lower than that of the 

trapezoidal corrugated core. 
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Table 3. Effects of the corrugated cores and the equivalent non-corrugated cores on the critical buckling 

compressions of FG-CNTRC plates (MPa) (m 1, n 1= = , a b 100h= = , fh =3mm , ch 15mm= , f 2mm= ,

tc 4f= , 4 =  , r 1.4mm= , rc 2r= , d 0.6mm= , t 1mm= , T 400K,=  3
1K 0 MN m ,= 2K 0 MN m,=  

5
3K 0 MN m= ) 

 

*
CNTV  

Trapezoidal corrugated cores Round corrugated cores 

UD FG-X FG-O UD FG-X FG-O 

Corrugated core 

0.12 6.06 (71.45)** 6.10 (70.66) 6.04 (72.19) 6.31 (57.21) 6.34 (56.47) 6.28 (57.96) 

0.17 8.92 (71.30) 8.97 (70.57) 8.88 (72.07) 9.27 (57.17) 9.33 (56.48) 9.24 (57.79) 

0.28 14.17 (71.42) 14.28 (70.66) 14.13 (72.19) 14.75 (57.36) 14.86 (56.59) 14.71 (58.06) 

 Equivalent non-corrugated core 

0.12 1.73 1.79 1.68  2.70 2.76 2.64 

0.17 2.56 2.64 2.48 3.97 4.06 3.90 

0.28 4.05 4.19 3.93 6.29 6.45 6.17 

** The value difference between the corrugated core and equivalent non-corrugated core (%)

Fig. 3a examines the effects of CNT volume 

fraction on the postbuckling curves of FG-CNTRC 

plates with corrugated core under compressive 

loads, for both trapezoidal and round corrugations. 

The results indicate that increasing the CNT 

volume fraction enhances the postbuckling load-

carrying capacity of the plates. Additionally, the 

compressive postbuckling curves for both 

corrugation forms show a clear increase trend, 

demonstrating stability in the postbuckling load-

carrying capacity of the plates. Although both forms 

of corrugated cores show an increasing trend in 

postbuckling load-carrying capacity, the plates with 

trapezoidal corrugated cores achieve higher 

postbuckling load-carrying capacity. Fig. 3b shows 

that postbuckling pressure-carrying capacity 

increases as the CNT volume fraction increases for 

both perfect and imperfect cases. 

Fig. 4 shows the effect of the thermal 

environment on the postbuckling load-carrying 

capacity of FG-CNTRC plates with trapezoidal and 

round corrugated cores. As the temperature 

increases, the postbuckling load-carrying capacity 

of the plates decreases significantly, indicating that 

higher temperatures reduce the load-carrying 

capacity of the plates. This reduction can be 

explained by the change in the thermal 

environment of the structures, which decreases 

their stiffness at higher temperatures. Additionally, 

the plates with round corrugated cores show higher 

postbuckling load-carrying capacity compared with 

the plates with the trapezoidal corrugated core at 

all temperatures.  

Fig. 5 presents the relationship between 

postbuckling pressure curves with different pre-

compressions for plates with the trapezoidal 

corrugated core. The results are presented for both 

perfect and imperfect plates. As the pre-

compression increases, the pressure-carrying 

capacity also increases. Additionally, all curves 

display an upward trend in the postbuckling curve, 

indicating a better postbuckling pressure-carrying 

capacity in the large deflection region. 

Figs. 6a and 6b present the effects of 

geometrical sizes of corrugated cores on the 

postbuckling compression-carrying capacity of FG-
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CNTRC plates with trapezoidal and round 

corrugated cores, comparing perfect and imperfect 

plates. The results indicate that plates with 

trapezoidal corrugated cores have higher 

compression-carrying capacity than round 

corrugated ones. As the geometrical sizes of the 

corrugated cores increase, a reduction in 

postbuckling compression-carrying capacity is 

observed in both perfect and imperfect cases, 

showing that lower values for these sizes improve 

the load capacity of plates. 

Fig 7a and 7b present the postbuckling 

curves of FG-CNTRC plates with trapezoidal 

corrugated core under axial compression load and 

round corrugated core under external pressure, 

with different a h  ratios, for perfect and imperfect 

plates. In both cases, the results show that as the 

a h  ratio increases, the load-carrying capacity of 

the plates decreases significantly, with the slopes 

of the curves becoming steeper in the large 

deflection region.  

Fig 8a and 8b clearly demonstrate the effects 

of the linear foundation stiffnesses 1 2K ,  K  on the 

compressive load and external pressure for FG-

CNTRC plates with trapezoidal and round 

corrugated cores. As the foundation stiffness 

increases, both the compressive load and external 

pressure increase significantly, thereby enhancing 

the load-carrying capacity of the plates. Moreover, 

in both subfigures, the difference between perfect 

and imperfect plates is also shown.  

Fig. 9a and 9b present the effects of 

nonlinear foundation stiffness 3K  on the 

postbuckling curves of FG-CNTRC plates under 

compressive load and external pressure. Both 

scenarios involving positive and negative nonlinear 

stiffnesses of the foundation are illustrated. As 

depicted in Fig. 9a, the postbuckling curves of the 

plates exhibit a consistent upward trend when the 

nonlinear stiffness is positive. In contrast, when the 

nonlinear stiffness is negative, the postbuckling 

curves tend to decline in the region of large 

deflections. Fig. 9b also demonstrates a similar 

trend for plates under external pressure. As the 

positive values of 3K  increase, the load-carrying 

capacity increases accordingly, while the negative 

values of 3K  lead to a significant decrease in load-

carrying capacity. These results indicate that the 

nonlinear foundation stiffness 3K  has a significant 

impact on the load-carrying capacity of the plates, 

particularly in the large deflection region. 

 

  

(a) (b) 

Fig. 3. Effects of CNT distributions and volume fractions on the postbuckling behavior of plates with 

multi-layer corrugated core 
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Fig. 4. Effects of thermal environment on the 

postbuckling curves of FG-CNTRC plates with 

multi-layer corrugated FG-CNTRC core 

Fig. 5. Effects of the pre-compression on the 

postbuckling curves of FG-CNTRC plates with 

multi-layer corrugated FG-CNTRC core 
 

  

(a) (b) 

Fig. 6. Effects of geometrical parameters of corrugated cores on the postbuckling curves of FG-CNTRC 

plates with multi-layer corrugated FG-CNTRC core 

  

(a) (b) 

Fig. 7. Effects of a h  ratio on the postbuckling curves of FG-CNTRC plates with multi-layer corrugated 

FG-CNTRC core 
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(a) (b) 

Fig. 8. Effects of the linear foundation stiffnesses 1 2K ,  K on the postbuckling curves of FG-CNTRC plates 

with multi-layer corrugated FG-CNTRC core 

  

(a) (b) 

Fig. 9. Effects of nonlinear stiffness of foundation 3K  on the postbuckling behavior of FG-CNTRC plates 

with multi-layer corrugated FG-CNTRC core 

4. Conclusion  

A formulation of governing equations of FG-

CNTRC plates with multi-layer corrugated FG-

CNTRC core based upon the CPT is presented in 

this paper. By using the energy method, and Xia et 

al.’s homogenization theory of corrugated 

structures, the explicit expressions of critical 

buckling loads and postbuckling load-deflection 

curve are obtained. From the numerical examples, 

some significant remarks can be obtained. The 

CNT volume fraction, directions of CNT in the face 

sheets and the corrugated core, and the 

distribution types of CNT and corrugation form 

have a significant effect on the postbuckling curves 

of FG-CNTRC plates. The FG-X distribution 

achieves the highest critical buckling load values, 

and the corrugated core demonstrates a significant 

superiority over the equivalent non-corrugated 

core, especially the round corrugated core. 

Additionally, environment temperature and 

foundation parameters also affect the load-carrying 

capacity of the plates. 
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