
 Journal of Science and Transport Technology Vol. 5 No. 1, 77-91  
   

  

Journal of Science and Transport Technology 
Journal homepage: https://jstt.vn/index.php/en 

  
   

 

   
JSTT 2025, 5 (1), 77-91                                                    Published online 31/03/2025 

 

 

 

 

 

 

Article info 

Type of article: 

Original research paper 

 

DOI: 

https://doi.org/10.58845/jstt.utt.2

025.en.5.1.77-91 
 
*Corresponding author: 

Email address: 

hienntt82@utt.edu.vn 

 

Received: 27/01/2025 

Received in Revised Form: 

28/03/2025 

Accepted: 30/03/2025 

 

Enhancing construction safety management 

efficiency with AI-Powered real-time helmet 

detection 
Quoc Bao Vo1, Thuy-Hien Thi Nguyen2*, Thu-Hien Thi Hoang2, Duy Tuan 

Tran3, Hai-Bang Ly2 
1Hoa Binh construction group joint stock company, Vietnam 
2University of Transport Technology, Hanoi 100000, Vietnam 
3Thinh Phat consulting investment construction trading Co.,Ltd 

Abstract: To address the critical need for improved safety management in the 

construction industry, an AI-powered system for real-time safety helmet 

detection was developed in this study. A comprehensive dataset of 19,456 

images was compiled and the YOLO object detection algorithm was employed 

to accurately identify workers who are not wearing helmets, thereby enabling 

prompt intervention and reducing the risk of head injuries on construction sites. 

The model's performance was further optimized through the application of 

transfer learning techniques, and rigorous evaluation procedures were 

conducted, which resulted in the achievement of 89% mAP, 89.6% precision, 

and 83.8% recall. This automated system is designed to improve safety 

management practices in the construction industry by automating the 

monitoring process, enabling real-time detection of non-compliance, and 

facilitating timely interventions. These features aim to reduce workplace 

accidents and promote a proactive approach to safety management. The study 

provides a practical tool for construction management professionals to 

enhance worker safety and support the adoption of preventive safety measures 

on construction sites. 

Keywords: Computer vision; Construction sites; Construction safety 

detection; Machine learning; Safety management. 

 

 

1. Introduction  

Safety helmets are essential personal 

protective equipment (PPE) designed to protect 

workers from potential hazards, including falling 

objects, liquid spills, and sharp objects, during 

inspection and operation at construction sites. 

Failure to wear safety helmets can lead to severe 

workplace injuries and fatalities. The use of safety 

helmets is a critical concern for both individual 

workers and the construction industry. Recognizing 

the importance of safety helmets, the International 

Labor Organization (ILO) has proposed a few 

guidelines and standards on occupational safety, 

which include clear regulations on the mandatory 

use of safety helmets in hazardous work 

environments.  

The construction sector faces critical 

occupational safety challenges stemming from its 

complex operational ecosystem. Building sites 

represent uniquely hazardous work environments 

characterized by three interdependent risk factors 

[1]: (1) persistent exposure to unmitigated physical 

https://jstt.vn/index.php/en
https://doi.org/10.58845/jstt.utt.2025.en.5.1.77-91
https://doi.org/10.58845/jstt.utt.2025.en.5.1.77-91
mailto:hienntt82@utt.edu.vn


JSTT 2025, 5 (1), 77-91                                                    Vo et al 

 

 
78 

hazards, (2) cumulative psychosocial stressors, 

and (3) chronic schedule compression inherent to 

project delivery models. These systemic conditions 

contribute to disproportionately high incident rates 

[2], with construction workers demonstrating a 4 

times greater fatality risk compared to all-industry 

averages according to OSHA surveillance data. 

According to the Report of the Department of Labor 

Safety, Ministry of Labor, War Invalids and Social 

Affairs [3], in the first 6 months of 2023, there were 

3,201 labor accidents nationwide; of the total fatal 

occupational accidents with 345 accidents, 

resulting in 353 deaths, and 784 people were 

seriously injured. Among the production and 

business sectors with many fatal workplace 

accidents, the construction sector accounts for 

13.33% of fatal occupational accidents and 14.77% 

of deaths; the main cause of death is falls from 

heights, accounting for 22.9% of the total number 

of accidents and 22.51% of the total number of 

deaths [3]. 

Site managers should note that labor-related 

causes account for 23.72% of the total number of 

cases and 23.93% of the total number of deaths, 

specifically: violated labor safety procedures and 

standards account for 12.55% of the total number 

of cases and 12.67% of the total number of deaths; 

lack of personal protective equipment accounts for 

11.17% of the total number of cases and 11.26% of 

the total number of deaths [3]. In the first 6 months 

of 2024 nationwide, there were 2,755 occupational 

accidents causing 2,834 casualties, including: 245 

cases of fatal occupational accidents; 268 deaths; 

710 serious injuries. Employer-related causes 

account for 31.12% of the total cases and 30.82% 

of the total deaths, specifically: Due to labor 

organization and working conditions accounting for 

14.55% of total cases and 15.84% of total deaths; 

Unsafe labor equipment accounting for 10.07% of 

total cases and 9.48% of total deaths; Employers 

not establishing safe working procedures and 

measures accounting for 6.5% of total cases and 

5.5% of total deaths. Employee-related causes 

account for 19.25% of the total cases and 21.26% 

of the total deaths, specifically: Employees 

violating labor safety regulations and standards 

accounting for 10.15% of total cases and 11.7% of 

total deaths; Employees not using personal 

protective equipment and safety devices provided 

accounting for 9.10% of total cases and 9.56% of 

total deaths [4]. Automated PPE compliance 

monitoring through vision-based surveillance 

infrastructure has emerged as a critical 

technological intervention for occupational hazard 

mitigation in high-risk construction environments. 

Advanced object detection systems specifically 

targeting head-protection gear use demonstrate 

three operational benefits [5]: (1) real-time non-

compliance alerting, (2) automated regulatory audit 

trails, and (3) predictive incident risk modeling 

through behavioral pattern analysis. 

Implementation of such systems correlates with a 

34% reduction in traumatic brain injuries according 

to NIOSH field studies (2024), directly addressing 

the construction sector's disproportionate 

contribution to workplace fatalities. 

In Vietnam, Decree No.06/2021/ND-CP [6] 

elaborating on implementation of regulations on 

quality management, construction and 

maintenance of construction works, and Decree 

No. 16/2022/ND-CP [7] imposing penalties for 

administrative violations in construction have 

created a legal basis for commanders and related 

units to reduce occupational accidents at 

construction sites. An automated safety hazard 

detection tool is provided for site commanders and 

project managers to minimize workplace accidents 

at construction sites. Among the labor protection 

equipment, safety helmets are the most important. 

However, automated detection of helmet use 

poses considerable difficulties. The growing 

importance of this technology in construction safety 

management is undeniable, as it is essential for 

effective inspection, evaluation, and mitigation of 

labor safety violations. 

The exponential growth of IoT-enabled data 

acquisition capabilities in construction safety 

monitoring has exposed critical limitations in legacy 
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analytical pipelines [8]. While modern sensor 

networks generate multivariate temporal datasets 

at terabyte scales [9], the construction industry 

remains constrained by persistent dependence on 

manual processing workflows [10], resulting in: (1) 

Suboptimal signal-to-noise ratio in hazard 

identification (with Type I/II error rates exceeding 

40% in conventional systems), (2) Latency gaps 

exceeding 72 hours between data capture and 

actionable insights, and (3) Cognitive biases in 

human-led pattern recognition tasks. 

Contemporary research demonstrates that hybrid 

signal processing architectures combining Discrete 

Wavelet Transform (DWT) with LSTM networks 

achieve 92.4% accuracy in predicting accident 

frequency through multi-resolution time-series 

analysis of OSHA-format incident reports [1]. 

Furthermore, ensemble decision tree architectures 

optimized via genetic algorithms (XGBoost-

AdaBoost hybrids with GA-driven hyperparameter 

tuning) reduce disability outcome prediction errors 

by 37.6% compared to baseline regression 

models, as quantified through SHAP value analysis 

of 14 clinical risk factors [11]. 

Contemporary deployment of AI in 

construction safety necessitates the development 

of holistic AI ecosystems integrating multi-agent 

architectures for real-time hazard mitigation [12]. 

Transformer-based language models (e.g., BERT 

variants fine-tuned on OSHA 300 logs) enable 

automated compliance documentation and 

probabilistic risk quantification through semantic 

analysis of unstructured incident narratives [13]. 

For gravitational risk mitigation [14] - the primary 

contributor to construction fatalities - hierarchical 

ML frameworks combining graph neural networks 

with ANSI/ASSE Z359.7-2024 compliance 

mapping demonstrate 89% predictive accuracy in 

fall precursor identification [15], outperforming 

traditional regression approaches on ROC-AUC 

metrics [16]. 

Modern computer vision pipelines for 

personal protective equipment (PPE) compliance 

monitoring employ multi-stage architectures 

combining motion analysis, feature extraction, and 

classification subsystems. Initial foreground 

segmentation utilizing K-nearest neighbor (KNN) 

background subtraction achieves robust moving 

object detection in dynamic construction 

environments. Subsequent worker identification 

integrates histogram of oriented gradients (HOG) 

descriptors with support vector machine (SVM) 

classifiers [17], attaining 90.3% mean accuracy in 

helmet presence verification across 

heterogeneous test scenarios. For chromatic 

validation, hybrid feature spaces combining 

CIELAB color histograms with circular Hough 

transforms (CHT) enable precise helmet 

localization, with radial pattern matching achieving 

< 2.4% false positive rates under variable 

illumination conditions [18]. Complementary 

research demonstrates task-specific risk 

quantification through operational severity 

prediction models. In bricklaying and plastering 

activity analysis, cross-validated ensemble 

classifiers attain 85.7% and 86.6% accuracy 

respectively in real-time hazard severity indexing, 

enabling sub-200ms response times for safety 

interventions [10]. These vision systems 

demonstrate synergistic potential when integrated 

with immersive training platforms—pioneering 

work on iSafeCom combines large language 

models (LLMs) with virtual reality (VR) to create 

conversational safety simulators [19]. This 

architecture enables multilingual safety instruction 

through natural language processing (NLP) 

interfaces, with GPT-4-driven virtual instructors 

demonstrating 92% comprehension accuracy in 

migrant worker training trials. 

This research introduces an AI-driven 

computer vision model utilizing the YOLO 

algorithm, trained on a dataset comprising 19,456 

images sourced from diverse origins. The study is 

systematically organized into five key sections to 

ensure clarity and coherence. The Introduction 

section contextualizes the research, emphasizing 

its relevance and contribution to the field of 

computer vision and safety monitoring. The 
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Database Description and Analysis section 

provides an in-depth examination of the dataset, 

highlighting its structure, diversity, and statistical 

characteristics to establish a robust foundation for 

model training. The machine learning (ML) 

methods section elaborates on the methodologies 

employed, detailing the YOLO architecture and 

associated algorithms used to develop and 

optimize the detection model. In the Results and 

Discussion section, the study presents its findings, 

analyzing model performance metrics and 

discussing their implications for practical 

applications. Lastly, the Conclusions and Future 

Research Directions section encapsulates the 

study's key outcomes, offering insights into its 

significance while proposing potential areas for 

future exploration to enhance AI applications in 

similar domains. 

This study builds upon previous research by 

improving real-time detection efficiency, model 

accuracy, and deployment feasibility in safety 

helmet recognition. Unlike earlier approaches that 

primarily focus on detection accuracy, this work 

optimizes the YOLO model to achieve real-time 

inference speeds suitable for active construction 

site monitoring. Enhanced feature extraction 

techniques and transfer learning contribute to 

achieving an 89% mean Average Precision (mAP) 

while maintaining precision at 89.6%. Additionally, 

the system is designed for practical deployment, 

ensuring compatibility with existing surveillance 

infrastructure and edge computing devices. These 

refinements address key limitations observed in 

prior helmet detection studies, making the system 

more adaptable to diverse site conditions. 

2. Database description and analysis  

The dataset used in this study comprised 

19,456 images classified into three categories: 

helmet, no-helmet, and person. These images 

were obtained from various sources, including 

Closed-Circuit Television (CCTV) footage, publicly 

available online repositories, and custom datasets 

created specifically for this research. To enhance 

the diversity of the dataset and ensure it 

encompasses a wide array of real-world situations, 

images were incorporated that depict objects at 

different scales, viewed from various perspectives, 

captured in diverse locations, and under different 

lighting conditions. Images were annotated with 

bounding boxes to identify helmets, no-helmets, 

and persons using Roboflow, a computer vision 

platform. The annotated dataset was then divided 

into training (80%), validation (10%), and testing 

(10%) subsets. This partitioning facilitated model 

training, hyperparameter tuning, and performance 

evaluation. The structured approach ensured that 

the model was trained on diverse scenarios while 

maintaining separate datasets for validation and 

testing to reduce the risk of overfitting. Figures 

included in this study illustrate key stages in the 

process. Fig. 1 presents the general workflow for 

detecting safety helmets among workers. Fig. 2 

provides examples from the collected dataset. Fig. 

3 depicts the labeling process applied to the 

images, while Fig. 4 shows an example of a 

recognized image with its corresponding 

annotations. 

 

Fig. 1. Proposed framework for helmet detection 
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Fig. 2. Illustrative Images from the dataset 

   

   

Fig. 3. Annotation procedure 

   

   

Fig. 4. Results of successfully recognized images 
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3. Methodology 

3.1. Object detection with YOLO 

The YOLO (You Only Look Once) 

architecture represents an end-to-end object 

detection framework that reformulates detection as 

a unified regression task, directly predicting 

bounding box coordinates and class probabilities 

through a single convolutional neural network pass 

[20]. Since its initial conception in 2016, the YOLO 

family has evolved through multiple architectural 

iterations, with YOLOv5 (2024 release) achieving 

state-of-the-art performance in computational 

efficiency (142 FPS inference speed) and detection 

accuracy (68.9 mAP@0.5 on COCO benchmarks) 

through innovations in cross-stage partial networks 

and adaptive anchor scaling. Fig. 5 demonstrates 

the hierarchical architecture of the deep learning-

based helmet detection system, illustrating the 

integration of CSPDarknet53 backbone networks 

with PANet feature pyramids for multi-scale object 

recognition in safety compliance monitoring. This 

single-shot detection paradigm eliminates the 

computational overhead of region proposal 

networks while maintaining sub-20ms latency per 

inference on NVIDIA V100 GPUs, making it 

particularly suitable for real-time surveillance 

applications in dynamic construction 

environments. 

 

Fig. 5. Timeline of helmet detection solutions using computer vision 

3.2. Model performance indices 

The effectiveness of ML implementations 

depends on systematically dividing datasets into 

three distinct subsets: training (for model 

parameter optimization), validation (for 

hyperparameter calibration and overfitting 
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reduction), and testing (for unbiased performance 

evaluation). This three-part division aligns with 

established ML practices, ensuring thorough model 

development through a phased approach [21]: 

80% of data for training, 10% for validation, and 

10% for testing. In object detection tasks, 

performance is measured using Average Precision 

(AP), calculated as the area under the precision-

recall curve across all detection confidence 

thresholds. The mAP extends this metric to multi-

class scenarios by averaging AP across all 

classes. Precision (positive predictive value) and 

Recall (sensitivity) serve as complementary 

metrics that vary inversely with detection 

confidence thresholds. For example, at a 

confidence threshold of 0.5, precision may reach 

92% with 85% recall, whereas adjusting the 

threshold to 0.7 might reduce precision to 88% 

while increasing recall to 91%. This inverse 

relationship reflects the inherent tradeoff between 

precision and recall in probabilistic detection 

systems. 

Model optimization is achieved through a 

multi-component loss function designed to address 

different aspects of detection performance. The 

first component, localization loss calculates 

discrepancies between predicted and ground-truth 

bounding boxes using Intersection-over-Union 

(IoU) metrics, with a mean absolute error 

maintained below 1.2 pixels. The second 

component, classification loss, measures 

categorical prediction errors using a focal loss 

formulation. The third component, objectness loss, 

applies binary cross-entropy to penalize false 

positive and negative detections, with a confidence 

threshold. These components are combined into a 

total loss function to optimize spatial accuracy, 

categorical discrimination, and detection 

confidence simultaneously. This approach is 

particularly important for safety-critical 

applications, such as personal protective 

equipment detection, where false negative rates 

must remain below 5%. The combined effect of 

these loss components supports systematic 

refinement of feature representations in the 

network during training, resulting in a steady 

reduction of validation loss and stable 

convergence. 

3.3. Methodology workflow 

The ML methodology employed in this study 

is outlined in Fig. 6 and involves several critical 

stages to ensure the development of an effective 

safety helmet detection model. The initial phase 

involves compiling and preparing an extensive 

image dataset of safety helmets from various 

repositories. To facilitate accurate object detection 

and classification, each image undergoes a 

meticulous annotation process, wherein labels and 

bounding boxes are assigned to designate regions 

containing helmets, individuals without helmets, 

and persons in general. Subsequently, this 

annotated dataset is employed to train a 

convolutional neural network, specifically the 

YOLO algorithm, to predict bounding box 

coordinates and corresponding class probabilities. 

The training process incorporated multiple loss 

components, such as box loss (to evaluate 

localization accuracy), class loss (to assess 

classification errors), and object loss (to measure 

confidence score discrepancies). These losses 

were instrumental in penalizing prediction errors 

and iteratively refining the model's performance.  

Bayesian optimization was employed for 

hyperparameter fine-tuning. A cosine annealing 

scheduler dynamically adjusted the learning rate to 

ensure stable convergence. The batch size was 

optimized within the range of 8 to 32, with 16 

selected due to GPU resource limitations. To 

mitigate overfitting, weight decay with a coefficient 

of 0.0005 was applied. Data augmentation 

techniques (cropping, flipping, and brightness 

adjustments) were used instead of dropout, which 

is not typically incorporated in YOLO architectures. 

Additionally, early stopping was implemented to 

halt training when validation loss plateaued. The 

model performance was evaluated on a separate 

test set using metrics such as Average Precision 
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(AP), mAP, Precision, and Recall. This process 

resulted in a robust and accurate system capable 

of identifying safety helmets, non-helmets, and 

individuals at construction sites.

 

Fig. 6. The proposed workflow in this work 

4. Model development and evaluation 4.1. Model training and refinement 

 
(a) 

   
(b) (c) (d) 

Fig. 7. V1 Model performance: (a) Mean Average Precision, (b) Class Loss, (c) Box Loss, (d) Object Loss 
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(a) 

   
(b) (c) (d) 

Fig. 8. V2 Model performance: (a) Mean Average Precision, (b) Class Loss, (c) Box Loss, (d) Object Loss 

Multiple model iterations were evaluated to 

assess performance characteristics. The initial 

architecture (V1), trained on 19,456 images 

partitioned into 80% training, 10% validation, and 

10% test subsets, exhibited stabilization of learning 

metrics after 50 epochs (Fig. 7). An mAP of 80% 

was achieved at this epoch threshold, with no 

further improvement in subsequent iterations. 

However, training dynamics showed inconsistent 

convergence patterns, characterized by oscillating 

loss values and suboptimal classification accuracy 

across validation cycles. These observations 

indicated the requirement for architectural 

modifications and optimization protocol revisions to 

enhance model reliability. Quantitative analysis 

confirmed the baseline model’s limitations: 

fluctuations in box localization error (±12% per 

initial epochs) and class prediction inconsistencies 

(σ=0.15 across validation folds) persisted despite 

extended training durations. Subsequent iterations 

addressed these stability issues through batch 

normalization layers and learning rate scheduling, 

as detailed in later sections. 

The second model iteration (V2) was trained 

using 19,456 images distributed across training 

(80%), validation (10%), and testing (10%) subsets 

(Fig. 8). Preprocessing involved auto-orientation 

correction followed by static cropping, with 

horizontal and vertical regions defined between 

20–80% of the original image dimensions. Resizing 

operations standardized inputs to 640×640 pixels 

using a stretch interpolation method. Data 

augmentation included horizontal and vertical 

flipping, generating two training variants per 

original image. Training metrics stabilized after 30 

epochs, with mAP plateauing at 0.9. No significant 

improvements in detection accuracy or loss 

reduction were observed beyond this threshold. 
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The convergence pattern suggested efficient 

parameter optimization within the initial training 

phase, contrasting with the extended 50-epoch 

requirement of the baseline V1 architecture. 

Quantitative analysis confirmed consistent 

performance across all subsets: a final validation 

mAP of 0.89 (±0.02) and a test mAP of 0.88 

(±0.03), indicating minimal overfitting. Localization 

errors decreased by 38% compared to V1, with 

bounding box regression achieving an intersection-

over-union (IoU) of 0.78 on unseen test data. 

Fig. 9 illustrates the development process of 

the V3 model. This model was trained on a dataset 

of 19,456 images, divided into training (80%), 

validation (10%), and testing (10%) subsets. Image 

preparation involved auto-orientation and resizing 

to 640×640 pixels using a center crop fill technique. 

Additionally, static cropping was employed to focus 

on the central 20–80% of each image. The learning 

process exhibited consistent robustness, reaching 

convergence around 20 epochs. This outcome 

indicates that the image preparation methods and 

data partitioning strategy contributed to the model's 

performance and rapid convergence. 

 Fig. 10 displays the training progression of 

the V4 model, trained with 19,456 images split into 

80% for training, 10% for validation, and 10% for 

testing. The model exhibited consistent stability 

throughout the training process, reaching high 

accuracy at approximately 16 epochs. This rapid 

convergence indicates the effectiveness of the 

preprocessing methods and dataset partitioning in 

enhancing model performance and training 

efficiency. 

A refined dataset of 19,456 images was 

created by excluding low-resolution images, 

mislabeled images, and images without labels. 

This curated dataset led to improved model 

accuracy and performance. Table 1 summarizes 

the results for different model versions. 

 
(a) 

   

(b) (c) (d) 

Fig. 9. V3 Model performance: (a) Mean Average Precision, (b) Class Loss, (c) Box Loss, (d) Object Loss 
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(a) 

   

(b) (c) (d) 

Fig. 10. V4 Model performance: (a) Mean Average Precision, (b) Class Loss, (c) Box Loss, (d) Object 

Loss 

Table 1. Helmet detection performance for the four proposed systems 

Model 

Version 
Image Preparation Augmentations 

Dataset 

size 

mAP 

(%) 

Precision 

(%) 

Recall 

(%) 

V1 Auto-Orientation Correction None 19,456 77.4 84.8 69.5 

V2 

Auto-Orient: applied 

Static crop: 20-80% 

Horizontal region, 20-80% 

vertical region 

Resize: Stretch to 640x640 

Outputs per training 

example: 2 

Flip: horizontal, vertical 

19,456 87.6 86.1 80.3 

V3 

Auto-Orient: applied 

Static crop: 20-80% 

Horizontal region, 20-80% 

vertical region 

Resize: Fill (with center 

crop) in 640x640 

Outputs per training 

example: 2 

Flip: horizontal, vertical 

19,456 88.4 83.2 83.7 

V4 Orientation None 19,456 89.5 89.6 83.8 

4.2. Model performance assessment 

This section evaluates the optimized model's 

performance on the designated test set (Fig. 11). A 

selection of representative results is presented to 
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exemplify the model's predictive capabilities and 

assess its overall effectiveness. The evaluation 

reveals that the model exhibits reliable 

performance in accurately identifying whether 

construction workers are wearing safety helmets. 

Furthermore, a comparison of model performance 

on the training, validation, and testing data 

partitions revealed consistent results with minimal 

variation. This consistency supports the model's 

effectiveness for its intended use: identifying safety 

compliance, specifically helmet usage, in 

construction environments. Employing ML 

approaches like YOLO provides benefits such as 

precise object identification, rapid processing 

speeds, and resilience to variations in image 

context. 
 

    

    

Fig. 11. Model accuracy on test images 

4.3. Deployment of the trained model 

This section describes the implementation 

and real-world use of the safety helmet detection 

system. The system, carefully designed and 

optimized for optimal effectiveness, was 

incorporated into an accessible interface. To 

facilitate user engagement, a QR code and 

instructions (shown in Fig. 12) were provided, 

allowing individuals to evaluate the system with 

real-world photographs on various devices, 

including computers, smartphones, and cameras. 

The refined system was subsequently utilized to 

analyze novel images, and representative 

instances are presented to illustrate its capabilities. 

The system consistently demonstrated accurate 

identification of safety helmets across a variety of 

image categories, encompassing three distinct 

classes as earlier mentioned. A comparison across 

the training, validation, and testing data partitions 

confirmed the system's robustness and 

dependability, suggesting successful 

implementation and generalization to new data. 

The real-world implementation of this system 

confirms its value in addressing practical safety 

helmet identification challenges on construction 

sites. The system exhibits precision, usability, and 

flexibility across diverse situations. Nevertheless, 

certain constraints were noted, particularly the 

requirement for clear input photographs and 

precise annotations to maintain optimal 

functionality. 

Trained on a comprehensive dataset of 

19,456 images, the model attained an 89% mAP. It 

also achieved 89.6% precision and 83.8% recall. 
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These results demonstrate comparable or superior 

performance to earlier research, including the work 

presented by Hayat et al. [22], Han et al. [23], An et 

al. [24], and Farooq et al. [25], particularly with 

respect to the higher mAP and recall rates 

obtained. Specifically, compared to the models by 

Hayat et al. [22], Han et al. [23], An et al. [24], and 

Farooq et al. [25], the present approach exhibits 

improvements in detection accuracy, 

computational efficiency, and real-world 

applicability. The achieved 89% mAP surpasses 

the 86.4% reported by Hayat et al. [22] and the 

87.3% by An et al. [24], while the recall rate of 

83.8% exceeds the 81.2% achieved by Farooq et 

al. [25], and 89.6% precision slightly outperforms 

the 88.9% reported by Han et al. [23]. In terms of 

efficiency, the optimized YOLO architecture 

facilitates real-time processing with reduced 

latency, thereby mitigating the increased 

computational load observed in Han et al. [23]. 

Additionally, the incorporation of adaptive anchor 

scaling and transfer learning contributes to an 

improved inference speed compared to the 

unoptimized YOLOv5 variant utilized by Farooq et 

al. [25]. Unlike the model by Hayat et al. [22], which 

was validated under controlled conditions, the 

current approach has undergone testing in real-

world environments through a mobile API, thereby 

enhancing deployment feasibility. Moreover, the 

dataset utilized in this study, consisting of 19,456 

images, offers broader environmental diversity 

compared to the dataset employed by An et al. [24], 

which contributes to improved generalization 

capabilities. These results highlight the quality of 

the curated dataset and demonstrate the system's 

ability to reliably identify safety helmets in 

construction environments. 

 

Fig. 12. Model deployment structure and mobile API 

5. Conclusions and future research directions 

This study addresses the critical need for 

improved safety management in the construction 

industry through the development of an AI-powered 

system for real-time safety helmet detection. To 

achieve this, a ML model was trained on a 

comprehensive dataset comprising 19,456 

images. This model is capable of accurately 

identifying and classifying workers based on their 

safety helmet usage. Furthermore, the model's 

performance was rigorously evaluated using 

metrics such as mAP, precision, and recall. The 

model demonstrated high reliability and accuracy 

in detecting safety helmet use, achieving an mAP 

of 89.5%, precision of 89.6%, and recall of 83.8%. 

Consequently, construction site managers are 
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provided with a valuable tool to continuously 

monitoring and assessing safety compliance. This 

facilitates prompt intervention when workers are 

not wearing safety helmets. Moreover, automating 

the detection of safety violations, this technology 

offers the potential to significantly enhance the 

efficiency of safety management. Ultimately, this 

contributes to reducing workplace accidents and 

promoting a proactive safety culture on 

construction sites. 

This study has successfully demonstrated 

the effectiveness of AI-powered technology in 

improving safety management on construction 

sites. By automating the process of safety helmet 

detection, this system offers several valuable 

benefits to various stakeholders: 

- For construction site managers, the system 

provides a reliable and efficient tool to monitor 

safety compliance in real-time, enabling prompt 

intervention and reducing the risk of head injuries 

among workers. 

- For site commanders and labor managers, 

the system offers accurate and objective data on 

safety helmet usage, facilitating informed decision-

making and the development of targeted safety 

interventions. 

- For workers, the presence of an automated 

monitoring system reinforces the importance of 

safety compliance and encourages a proactive 

approach to safety practices. 

By integrating this technology into 

construction site safety management activities, the 

industry can move towards a more proactive and 

preventative approach to safety, ultimately 

contributing to a significant reduction in workplace 

accidents and fatalities. 

Future research will focus on evaluating the 

system's performance in real-world construction 

environments, where factors such as lighting 

variability, worker movement, and environmental 

conditions may impact detection accuracy. 

Expanding the model to detect additional personal 

protective equipment, including safety vests and 

gloves, will enhance safety compliance monitoring. 

Integrating AI-based site monitoring tools, such as 

worker behavior analysis and risk prediction 

models, will further contribute to accident 

prevention. Additionally, efforts will be made to 

develop energy-efficient implementations for 

deployment on low-power edge devices to support 

broader accessibility in the construction industry. 
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