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Abstract: Cadmium (Cd) is a toxic heavy metal with significant environmental 

and human health risks, particularly when accumulated in surface soils. Its 

presence reduces soil fertility, disrupts microbial ecosystems, and poses long-

term ecological threats. This study explores the application of artificial 

intelligence (AI) models for mapping the potential distribution of Cd 

contamination in surface soils within the Gianh River Basin, Quang Binh 

Province, Vietnam. Four machine learning (ML) models Logistic Regression 

(LR), Radial Basis Function Network (RBFN), Random Forest (RF), and 

Support Vector Machine (SVM) and four deep learning (DL) model variants 

(DNN-Opt1 to DNN-Opt4) were developed and compared. The DNN variants 

differ based on the configuration of hidden layers and neuron counts. 

A total of 100 topsoil samples were collected and classified using the 

Geoaccumulation Index (Igeo), serving as the target variable for supervised 

learning. Thirteen conditioning factors were used as input variables, including 

Elevation, Soil Type, Slope, Curvature, proximity to roads and rivers, and seven 

Landsat 8 spectral bands. The dataset was divided into training (70%) and 

testing (30%) subsets. Model performance was evaluated using multiple 

metrics, including the area under the ROC curve (AUC), accuracy (ACC), 

Kappa coefficient, root mean square error (RMSE), and confusion matrix. 
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 Abstract (continued) Among the tested models, the DNN-Opt2 variant 

demonstrated the highest predictive performance with AUC = 0.858, ACC = 

73.33%, Kappa = 0.47, and RMSE = 0.45. The resulting contamination 

potential map, particularly that derived from the RBFN model, categorized the 

region into five contamination risk levels: very low, low, moderate, high, and 

very high. This spatial information is critical not only for environmental 

management but also for assessing risks to groundwater quality and the 

structural integrity of buildings located in high-risk zones. The study 

demonstrates the efficacy of deep learning in enhancing predictive accuracy 

for heavy metal contamination mapping and underscores its practical 

relevance in civil and environmental engineering applications. 

Keywords: Cd contamination potential map; Igeo; deep learning; machine 

learning; Gianh river basin. 

 

 

1. Introduction 

Cadmium (Cd) is a hazardous heavy metal 

known for its persistence in the environment and 

severe toxic effects on human health, agriculture, 

groundwater systems, and infrastructure [1, 2]. It 

enters surface soils through both natural processes 

and anthropogenic activities such as mining, 

industrial discharge, and the excessive use of 

phosphate fertilizers [3-5]. Cd is highly mobile, 

exhibits significant bioaccumulation potential, and 

readily enters the food chain through crops  [6, 7]. 

Elevated Cd exposure through dietary intake has 

become a growing concern in parts of Southeast 

Asia, often exceeding the safety limits established 

by the Food and Agriculture Organization (FAO) 

and the World Health Organization (WHO) [8, 9]. 

In Vietnam, and particularly in the Gianh 

River Basin of Quang Binh Province, increasing 

levels of Cd contamination have been reported due 

to expanding agricultural and industrial activities 

[10-14]. Cd accumulation in surface soil not only 

degrades soil quality and threatens ecosystems 

but also raises risks to groundwater contamination 

and the long-term stability of infrastructure, as 

contaminated soils may chemically interact with 

construction materials. Accurate spatial mapping of 

Cd contamination is therefore essential for land-

use planning, environmental management, and 

civil infrastructure safety. 

While many current studies focus on source 

identification, concentration analysis, and 

remediation technologies such as 

phytoremediation, bioremediation, and chemical 

immobilization [15, 16], mapping the spatial 

distribution of contamination potential has emerged 

as a critical tool for decision-making in 

environmental risk management [17]. In recent 

years, artificial intelligence (AI) methods, 

particularly machine learning (ML) and deep 

learning (DL) techniques, have shown promise in 

improving predictive accuracy for spatial modeling 

tasks [18-20]. 

ML techniques have been widely used to 

model various environmental risks, such as heavy 

metal accumulation [21, 22], Cd prediction in crops 

[19], and mapping soil contamination using remote 

sensing [23-25]. While these applications often 

focus on regression tasks, classification-based 

models have successfully been employed in 

environmental mapping for problems such as 

https://jstt.vn/index.php/en
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groundwater potential [26-28], landslide 

susceptibility [29, 30], and flood risk [18, 31]. 

In this study, we apply and compare four 

widely used ML classification models Logistic 

Regression (LR), Radial Basis Function Network 

(RBFN), Random Forest (RF), and Support Vector 

Machine (SVM) with four variants of Deep Neural 

Network (DNN) models (DNN-Opt1 to DNN-Opt4) 

to predict and map the potential of Cd 

contamination in the Gianh River Basin. The DNN 

variants differ in their configurations of hidden 

layers and neuron counts. The input dataset 

comprises 100 topsoil samples, classified into 

contaminated and non-contaminated classes 

based on the Geoaccumulation Index (Igeo). 

Thirteen influencing factors were used as input 

variables, including Elevation, Soil Type, Slope, 

Curvature, Distance to roads, Distance to rivers, 

and Landsat 8 bands (1–7). 

The resulting Cd contamination potential 

map categorizes the area into five levels-very low 

to very high. This spatial information provides 

valuable insights not only for environmental 

monitoring but also for evaluating groundwater 

vulnerability and infrastructure safety in high-

susceptible zones. By demonstrating the 

capabilities of ML and DL techniques in this 

context, this study highlights their practical 

applications in civil and environmental engineering. 

2. Study Area

 
Fig. 1. Study area in the Gianh River basin, Quang Binh Province, Vietnam 

The study area encompasses a part of the 

Gianh River basin, covering an area of 1,808 km² 

(Fig. 1). The Gianh River is the largest of the five 

main rivers flowing in the Quang Binh Province 

(Roòn River, Gianh River, Dinh River, Ly Hoa River, 

and Nhat Le River). Originating at an elevation of 

1,350 m from Co Pi Mountain in the Truong Son 

Range, it flows through the districts of Minh Hoa, 

Tuyen Hoa, Quang Trach, Bo Trach, and Ba Don 

Town before emptying into the East Sea at Gianh 

Estuary. The river extends 158 km in length, with 

an average basin width of 38.8 km, a river network 

density of 1.54 km/km², and a total basin area of 

4,680 km².The Gianh River provides significant 

benefits in terms of fisheries and supplies water for 

agriculture and domestic use for communities in 

the riverine plains and the expansive downstream 

delta region [32]. Additionally, it contributes to the 

formation of stunning natural landscapes, most 

notably Phong Nha Cave, a UNESCO World 

Natural Heritage site, which underscores the need 

for its protection to prevent water pollution and 
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alterations to the riverbed. With the development of 

industrial and agricultural activities in the study 

area, the Gianh River is experiencing an increasing 

impact from environmental pollution [33]. Organic 

pollutants also tend to increase toward the river’s 

lower reaches, where population density is higher, 

and markets, industrial production facilities, and 

traditional craft villages are concentrated [34]. The 

Gianh River basin serves as a critical interface 

between aquatic and terrestrial ecosystems, 

playing an essential role in maintaining water 

quality, stabilizing riverbanks, and supporting 

aquatic biodiversity. This area is considered a 

potential reservoir for heavy metals, which may 

accumulate due to flooding or be transported from 

higher elevations through sedimentation or 

percolation processes [35-37]. 

3. Role of Cadmium (Cd) Mapping in Assessing 

Groundwater Use and Infrastructure Suitability 

on Contaminated Soil 

Cadmium (Cd) mapping plays a pivotal role 

in environmental planning and public health 

protection, especially in regions where industrial, 

agricultural, or geological activities contribute to 

soil contamination. By visualizing the spatial 

distribution of cadmium concentrations, this 

approach enables researchers and policymakers 

to assess potential risks to groundwater and 

evaluate land suitability for infrastructure 

development. In areas where cadmium is present 

at hazardous levels, mapping helps identify 

contamination hotspots, trace pollution pathways, 

and prioritize zones for remediation or restricted 

land use [38]. 

When it comes to groundwater use, Cd 

mapping is essential for determining water safety 

and sustainability. It provides critical insights into 

how cadmium migrates through soil and potentially 

reaches aquifers, aiding in the protection of 

drinking water sources [39]. Similarly, infrastructure 

planning on contaminated soil benefits from this 

spatial analysis, as it highlights areas where 

structural materials may corrode or where health 

risks for construction workers and future occupants 

may be elevated. Ultimately, cadmium mapping 

informs safer, more sustainable land-use decisions 

by integrating environmental data with 

technological tools such as remote sensing, 

machine learning, and geostatistical modeling. 

4. Methodology and data used 

4.1. Methodology 

The research methodology follows a 

structured six-step workflow, as illustrated in Fig. 2. 

The core objective is to develop a cadmium (Cd) 

contamination potential map by solving a binary 

classification problem, where soil samples are 

categorized as either contaminated (1) or non-

contaminated (0) based on Cd concentration 

levels. 

To achieve this, eight machine learning (ML) 

and deep learning (DL) models were evaluated to 

identify the most suitable approach for accurate 

spatial prediction. These models include four ML 

algorithms-Logistic Regression (LR), Radial Basis 

Function Network (RBFN), Random Forest (RF), 

and Support Vector Machine (SVM)-and four 

optimized Deep Neural Network (DNN) variants 

(DNN-Opt1 to DNN-Opt4), each configured with 

different combinations of hidden layers and 

neurons. 

Model development and training were 

conducted using Weka 3.8.6, an open-source data 

mining software developed by the University of 

Waikato. Detailed configurations and 

hyperparameters for all models are provided in 

Table 1. 

Soil sampling and laboratory analysis 

procedures are shown in Fig. 3. A total of 100 

topsoil samples were collected from the study area 

and analyzed for Cd concentrations. 

Measurements were conducted using the Agilent 

ICP-MS 7900, an inductively coupled plasma mass 

spectrometry system equipped with 4th-generation 

Octopole Reaction System (ORS) technology [40]. 

The analytical work was performed at the Institute 

of Earth Sciences, Vietnam Academy of Science 

and Technology. 
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Fig. 2. Flow chart of methodology in this research 

 

Fig. 3. Soil Sampling in the Field and Cadmium Analysis in the Laboratory 
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Table 1. Hyperparameters of machine learning and deep learning models 

No. Hyperparameter 

Models 

DNN-

Opt1 

DNN-

Opt2 

DNN-

Opt3 

DNN-

Opt4 
LR 

RBF

N 
RF SVM 

 Number of Epochs 10 - - - - 

 Batch size 100 100 100 100 100 

 Activation function Softmax - - - - 

 Loss function MCXENT - - - - 

 
Number of hidden 

layers 
0 1 2 3 - - - - 

 Number of neurons 0 8 16 24 - - - - 

 
Optimization 

algorithm 
Stochastic gradient descent - - - - 

 Updater Adam - - - - 

 Learning rate 0.001 - - - - 

 
Weight initialization 

method 
XAVIER - - - - 

 Bias initialization 0.0 - - - - 

 

Gradient 

normalization 

threshold 

1.0 - - - - 

 
Number of decimal 

places 
2 3 2 2 2 

 
Maximum of 

interations 
- - - - -1 -1 100 - 

 Ridge - - - - 1E-8 1E-8 - - 

 Clustering seed - - - - - 1 - - 

 
Minimum standard 

deviation 
- - - - - 0.1 - - 

 
Number of clusters 

for K-mean 
- - - - - 2 - - 

 
Maximum depth of 

the tree 
- - - - - - 0 - 

 
Number of 

Execution Slots 
- - - - - - 1 - 

 SVM type - - - - - - - C-SVC 

 Coefficient - - - - - - - 0.0 

 Cost - - - - - - - 1.0 

 Degree - - - - - - - 3 

 Tolerance - - - - - - - 0.001 

 Gamma - - - - - - - 0.0 

 Loss - - - - - - - 0.1 

 Seed - - - - - - 1 1 
 

4.1.1. Selection of conditioning factors 

(parameters) 

The accumulation and distribution of heavy 

metals in soils are governed by a complex interplay 

of geospatial and environmental factors, with key 

influences including soil physicochemical 

properties, topographic features, and land use 

patterns [41]. Among these, cadmium (Cd) 

contamination is particularly associated with soil 

type, elevation, slope, hydrology, and 

anthropogenic activities. Cd can also originate from 

external sources such as industrial emissions, oil 

refineries, sewage sludge, and the application of 

chemical fertilizers [42]. 

To effectively model and map Cd 

contamination potential, this study selected 13 

conditioning factors as input variables for the 

machine learning models. These include six 
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environmental variables soil type, elevation, slope, 

curvature, distance to roads, and distance to rivers 

alongside seven spectral bands from Landsat 8 

imagery (Bands 1–7) (Fig. 4). The inclusion of 

Landsat 8 data compensates for the unavailability 

of certain direct indicators of Cd pollution, as the 

satellite’s wide spectral coverage offers detailed 

surface reflectance information useful for capturing 

variations in vegetation cover, moisture, and land 

surface conditions [43]. 

Topographic parameters such as elevation, 

slope, and curvature play a vital role in influencing 

runoff, erosion, and soil accumulation processes, 

which directly impact the mobility and 

concentration of Cd in surface soils. Distance to 

rivers serves as a proxy for hydrological transport 

potential, while proximity to roads is considered an 

indirect indicator of vehicular emissions and related 

pollutant deposition. Soil types are critical due to 

their inherent physical and chemical properties-

such as pH, organic matter content, texture, and 

grain size distribution, that affect the retention and 

movement of heavy metals [42, 44]. 

To evaluate the relative importance of these 

13 variables, the OneR attribute evaluation method 

was applied, providing insights into the individual 

contribution of each factor to Cd contamination 

potential within the study area [30]. 

4.1.2. Cd contamination data labeling 

Initially, the analysis of Cd content was 

conducted on soil samples collected from the field. 

Subsequently, the Geoaccumulation Index (Igeo) 

was analyzed and calculated to determine 

locations with Cd contamination and those without. 

Accordingly, samples identified as Cd-

contaminated were assigned a value of 1, while 

non-contaminated samples were assigned a value 

of 0. Table 3 provides a detailed presentation of the 

results of Cd analysis and the data labeling for the 

machine learning models. A summary of the Igeo 

index is presented below: 

The Igeo is a widely utilized method for 

assessing the degree of heavy metal pollution in 

the environment, particularly in soil and sediments 

[45, 46]. This index was first proposed by the 

German geochemist Müller in 1969 to compare the 

concentrations of heavy metals in environmental 

samples with their natural background values [47]. 

Its advantages include simplicity and ease of 

application; however, a limitation is its dependence 

on background values [47]. It is primarily applied in 

the assessment of soil, water, and sediments for 

pollution management purposes [48]. The formula 

for calculating Igeo [47] is as follows: 

Igeo=log
2

(
Hn

1.5 x Kn

) 
(1) 

Where: Hn is the concentration of Cd in the 

environmental sample under evaluation. Kn  is the 

natural background concentration of Cd. 

Classification of pollution levels according to 

Igeo [47]: 

− Igeo ≤ 0: No pollution (or natural level). 

− 0 < Igeo ≤ 1: Low pollution level. 

− 1 < Igeo ≤ 2: Moderate pollution level. 

− 2 < Igeo ≤ 3: High pollution level. 

− 3 < Igeo ≤ 4: Very high pollution level. 

− Igeo > 4: Extremely high pollution level. 

4.1.3. Deep Neural Network (DNN) 

The DNN operates based on a structure 

comprising multiple neuron layers, including an 

input layer, several hidden layers, and an output 

layer [49]. Data passes through these layers in a 

feedforward process to generate predictions [50]. 

The learning process involves calculating the error 

between the predicted and actual outcomes, 

followed by adjusting the weights and biases 

through backpropagation and optimization 

algorithms to minimize the error [51]. Techniques 

such as regularization help prevent overfitting, 

enabling the DNN to learn complex features from 

the data due to its deep structure [52]. 

Experimentation with variations in the number of 

layers and neurons in the hidden layers impacts 

the model’s predictive capability [53]. In this study, 

we modified the neuron architecture in the hidden 

layers of the DNN model according to four 

scenarios. These models, corresponding to the 

four scenarios, were designated DNN-Opt1, DNN-
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Opt2, DNN-Opt3, and DNN-Opt4. Detailed 

parameters of these models are presented in Table 

1. 

4.1.4. Logistic Regression (LR) 

LR is a regression model used to predict the 

probability of an event occurring, commonly 

applied to binary classification problems [54]. It 

employs the sigmoid function on the weighted sum 

of input variables multiplied by coefficients, 

transforming this sum into a value between 0 and 

1, which represents the probability [54]. LR is 

trained by optimizing a loss function, such as 

cross-entropy, and adjusting the coefficients to best 

fit the data [55]. LR is a widely used machine 

learning model that has been applied in Earth 

science fields, such as mapping landslide 

susceptibility [56] and flood susceptibility mapping 

[57]. Table 1 provides detailed hyperparameters of 

the LR model. 

4.1.5. Radial Basis Function Networks (RBFN) 

RBFN is a type of artificial neural network 

that employs radial basis functions to process data 

[58]. RBFN consists of three layers: an input layer, 

a hidden layer with neurons activated by radial 

basis functions (typically Gaussian), and an output 

layer [59]. Each neuron in the hidden layer 

measures the distance from the input to a specific 

'center,' and then transforms this distance into an 

output value through the RBF [59]. The output layer 

is typically a linear combination of the outputs from 

the hidden layer, enabling the model to perform 

nonlinear classification or prediction [59]. The 

hyperparameters of the RBFN model are detailed 

in Table 1. 

4.1.6. Random Forest (RF) 

RF is a machine-learning model that utilizes 

multiple decision trees to make predictions [60]. 

Each tree in RF is trained on a random subset of 

the data, and these trees also consider only a 

random subset of features when splitting nodes. 

The final output of the model is an aggregation of 

predictions from all the trees, which helps mitigate 

overfitting [60]. For classification tasks, the most 

frequently selected class becomes the result; for 

regression tasks, it is the average of the predictions 

[61]. Consequently, RF offers high accuracy and 

good interpretability. The parameters of the RF 

model used in this study are presented in Table 1. 

4.1.7. Support Vector Machine 

SVM is a widely used machine learning 

model for classification and regression tasks [62]. 

SVM seeks to construct an optimal hyperplane to 

separate data classes [62]. The objective is to 

maximize the margin between this hyperplane and 

the nearest data points from each class, known as 

support vectors [62]. For data that cannot be 

linearly separated, SVM employs kernel functions 

to transform the data into a higher-dimensional 

space. SVM excels in efficiently handling binary 

classification problems but can also be extended to 

multiclass classification [63]. The model is highly 

regarded for its ability to reduce overfitting through 

the optimization of the margin between classes 

[64]. 

4.1.8. Assessment of model accuracy 

The model's performance was evaluated 

using standard classification metrics, including 

Area Under the Curve (AUC), Accuracy (ACC), 

Sensitivity (SST), Specificity (SPF), Positive 

Predictive Value (PPV), Negative Predictive Value 

(NPV), Root Mean Square Error (RMSE), and the 

Kappa coefficient. These metrics provide a 

comprehensive assessment of the model's 

predictive capabilities in terms of both correctness 

and reliability. Definitions and mathematical 

formulations of these evaluation metrics are 

presented in detail by [30]. 

4.2. Data used 

The dataset used in this study consists of two 

main components: (1) data derived from the 

analysis of cadmium (Cd) content and the 

geoaccumulation index (Igeo) of 100 soil samples 

representing different soil types within the study 

area (Table 3), and (2) baseline spatial data 

comprising 13 factor maps, as detailed in Table 2 

and Fig. 4. The 100 soil samples were randomly 

divided into training and testing sets in a 70:30 

ratio. Accordingly, the training dataset includes 70 
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samples, with 35 labeled as '1' and 35 as '0,' while 

the testing dataset comprises 30 samples, with 15 

labeled as '1' and 15 as '0.' The sample division 

was carried out using a random sampling algorithm 

implemented in ArcMap 10.8. 

Different soil types identified in the study area 

are categorized from S1 to S22. Their descriptions 

are provided in Table 4. 

Table 2. Data Sources for Maps of Factors Influencing Cd Contamination in the Gianh River Basin 

No. Factors Scales/Resolution Sources 

1 Elevation (m) 30 m/pixel 

DEM SRTM 1 arc from NASA (link: 

https://www.earthdata.nasa.gov/data/instrument

s/srtm) 

2 Soil type 1:50,000 
National Institute of Agricultural Planning and 

Projection 

3 Slope (degree) 30m/pixel Generate from DEM 

4 Curvature 30m/pixel Generate from DEM 

5 Distance to roads (m) 30m/pixel 
Generate from the main road map (digitized 

from Google Earth) 

6 Distance to rivers (m) 30m/pixel 
Generate from the main river map (digitized 

from Google Earth) 

7 
Landsat 8 Images (Band 

1–7) 
30m/pixel 

USGS Explorer 

(https://earthexplorer.usgs.gov/) 
 

Table 3. Results of Cd content analysis, Igeo, and 

labeling of soil-type samples in the study area 

No. Sample code Cd (mg/kg) Igeo (cd) Label 

Mangrove forest   
1 SG70 0.21 0.574 1 

2 SG76 0.24 1.766 1 

3 SG79 0.07 -0.148 0 

4 SG80 0.16 1.341 1 

5 SG86 0.24 1.612 1 

6 SG89 0.21 0.650 1 

7 SG90 0.15 1.217 1 

8 SG91 0.11 1.537 1 

9 SG92 0.13 1.129 1 

Aquaculture   
10 SG68 0.37 1.332 1 

11 SG75 0.08 -0.878 0 

12 SG78 0.14 -0.070 0 

13 SG93 0.11 -0.418 0 

14 SG94 0.23 0.646 1 

15 SG95 0.35 1.252 1 

16 SG96 0.09 -0.708 0 

Crops    
17 SG11 0.24 0.707 1 

18 SG12 0.21 0.515 1 

19 SG16 0.12 -0.293 0 

20 SG19 0.09 -0.708 0 

21 SG28 0.10 -0.556 0 

22 SG29 0.03 -2.293 0 

23 SG49 0.15 0.029 0 

24 SG59 0.22 0.582 1 

25 SG50 0.23 0.646 1 

26 SG77 0.03 -2.293 0 

27 SG37 0.13 -0.177 0 

28 SG30 0.21 0.515 1 

29 SG40 0.11 -0.418 0 

30 SG41 0.13 -0.177 0 

31 SG42 0.15 0.029 0 

32 SG48 0.17 0.210 0 

33 SG58 0.52 1.823 1 

34 SG55 0.64 2.122 1 

35 SG57 1.10 2.904 1 

36 SG65 0.26 0.823 1 

37 SG62 0.07 -1.070 0 

38 SG43 0.09 -0.708 0 

39 SG69 0.69 2.231 1 

40 SG53 0.17 0.210 0 

41 SG46 0.2 0.444 1 

42 SG39 0.07 -1.070 0 

43 SG52 0.17 0.210 0 

44 SG25 0.09 -0.708 0 

45 SG24 0.08 -0.878 0 

Rice seedlings    
46 SG02 0.03 -2.293 0 

47 SG03 0.02 -2.878 0 

48 SG04 0.14 -0.070 0 

49 SG06 0.09 -0.708 0 

50 SG07 0.04 -1.878 0 

51 SG08 0.06 -1.293 0 

52 SG09 0.16 0.122 0 

53 SG10 0.17 0.210 0 

54 SG13 0.32 1.122 1 

55 SG15 0.10 -0.556 0 

56 SG61 0.15 0.029 0 

57 SG81 0.09 -0.708 0 

58 SG60 0.3 1.029 1 

59 SG17 0.11 -0.418 0 

60 SG14 0.16 0.122 0 

61 SG05 0.1 -0.556 0 

62 SG18 0.24 0.707 1 

https://www.earthdata.nasa.gov/data/instruments/srtm
https://www.earthdata.nasa.gov/data/instruments/srtm
https://earthexplorer.usgs.gov/
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Table 3. (continued) 

No. Sample code Cd (mg/kg) Igeo (cd) Label 

63 SG21 0.39 1.408 1 

64 SG23 0.42 1.515 1 

65 SG82 0.98 2.737 1 

Rice    
66 SG31 0.23 0.646 1 

67 SG36 0.06 -1.293 0 

68 SG38 0.15 0.029 0 

69 SG47 0.24 0.707 1 

70 SG51 0.28 0.930 1 

71 SG63 0.07 -1.070 0 

72 SG67 0.26 0.823 1 

73 SG71 0.07 -1.070 0 

74 SG74 0.04 -1.878 0 

75 SG87 0.07 -1.070 0 

76 SG64 1.38 3.231 1 

77 SG66 0.34 1.210 1 

78 SG85 0.26 0.823 1 

79 SG97 1.02 2.795 1 

80 SG98 0.25 0.766 1 

1 SG99 0.63 2.100 1 

82 SG100 0.47 1.677 1 

83 SG72 0.06 -1.293 0 

84 SG84 0.18 0.292 0 

85 SG88 0.08 -0.878 0 

86 SG73 0.42 1.515 1 

Other soils    
87 SG35 0.09 -0.708 0 

88 SG44 0.08 -0.878 0 

89 SG45 0.53 1.850 1 

90 SG33 0.03 -2.293 0 

91 SG34 0.08 -0.878 0 

92 SG27 0.15 0.029 0 

93 SG26 0.09 -0.708 0 

94 SG01 0.21 0.515 1 

95 SG20 0.27 0.877 1 

96 SG22 0.34 1.210 1 

97 SG54 0.09 -0.708 0 

98 SG56 0.47 1.677 1 

99 SG83 0.37 1.332 1 

100 SG32 0.11 -0.418 0 

 

Fig. 4. The parameter condition maps represent key environmental and anthropogenic factors 

influencing Cd contamination in the study area, including: (a) soil type, (b) elevation, (c) curvature, (d) 

slope, (e) distance to roads, (f) distance to rivers, and (g–m) spectral reflectance from Landsat 8 imagery 

(Bands 1–7). 



JSTT 2025, 5 (2), 48-70                                                   Vuong et al 

 

 
58 

 

 

Fig. 4. (continued) 



JSTT 2025, 5 (2), 48-70                                                   Vuong et al 

 

 
59 

 

Fig. 4. (continued) 

Table 4. Description of Soil Types (S1–S22) Used in the Soil Classification Map 

No 

Codes 

of Soil 

Types 

Description 

1  S1 Lakes, reservoirs 

2  S2 Rivers, streams 

3  S3 Humus gray soil on mountains 

4  S4 Limestone 

5  S5 Acidic coastal sandy soil 

6  S6 Slightly acidic to neutral coastal sandy soil 

7  S7 Acidic gley soil 

8  S8 Highly saline soil 

9  S9 Moderately to slightly saline soil 

10  S10 Newly transformed acidic soil 

11  S11 Typical yellow-brown soil 

12  S12 Active acid sulfate soil 

13  S13 Acidic alluvial soil 

14  S14 Slightly acidic to neutral alluvial soil 

15  S15 Thin-layered acidic soil 

16  S16 Degraded gray soil 

17  S17 Light-textured gray soil 

18  S18 Feralitic gray soil 

19  S19 Indurated gray soil 

20  S20 Mottled gray soil 

21  S21 Rocky gray soil 

22  S22 Typical white-yellow dunes 
 

5. Results and discussion 

5.1. Ranking of conditioning factors 

Fig. 5 illustrates the ranking results of the 13 

conditioning factors influencing cadmium (Cd) 

contamination in the Gianh River Basin and 

surrounding areas, based on the OneR evaluation 

method. Among all factors, soil type was identified 

as the most influential, with a score of 58.57, 

followed by distance to rivers with a score of 55.71. 

The remaining factors, ranked in descending order 

of influence, are Band 6, Band 2, Elevation, Band 

4, Band 1, Curvature, Slope, Band 5, Band 3, Band 

7, and distance to roads. 

This ranking helps highlight the most critical 
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variables affecting Cd distribution and supports the 

refinement of the model by identifying and 

potentially eliminating low-impact factors. The 

evaluation results demonstrate that all 13 selected 

factors contribute to Cd pollution in the study area. 

Even Distance to roads, the least influential factor, 

has an evaluation score of 38.57. Soil type was 

ranked as the most influential factor (Fig. 5). 

Analysis of the soil type map (Fig. 4a) revealed that 

contaminated sites were predominantly located in 

the following soil classes: 12 out of 50 samples 

were found in the 'Typical white-yellow dunes' 

class, 11 out of 50 in the 'Active acid sulfate soil' 

class, and 10 out of 50 in the 'Newly transformed 

acidic soil' class. The remaining contaminated sites 

were scattered across other soil types. Several 

reasons may explain why Cd contamination tends 

to concentrate in these specific soil classes: The 

'Typical white-yellow dunes' are characterized by 

low organic matter content and poor pH buffering 

capacity, making them prone to Cd deposition from 

rainwater or groundwater transported from external 

sources. The 'Active acid sulfate soil' type exhibits 

extremely low pH values (pH < 4), which increases 

the solubility of heavy metals, particularly Cd. The 

'Newly transformed acidic soil' contains reactive 

forms of Fe and Mn, which are easily oxidized or 

reduced, creating ideal conditions for Cd to be 

released from mineral structures and adsorbed 

onto organic matter. Additionally, environmental 

factors such as hydrology, topography, land use 

practices, and anthropogenic activities in the study 

area may further contribute to the spatial variability 

of Cd distribution across different locations.  

The spectral bands (Bands 1–7) of Landsat 8 

imagery were selected as input variables due to 

their advantages in objectively capturing surface 

information, including geological characteristics, 

land cover, and soil properties. Band 1, within the 

violet spectral region with wavelengths ranging 

from 0.43 to 0.45 µm, facilitates the differentiation 

of shallow water and supports atmospheric 

correction [65, 66]. Band 2, in the blue spectral 

region with wavelengths from 0.45 to 0.51 µm, 

enables the discrimination of soil, water, and 

vegetation, as well as the assessment of water 

turbidity [65, 66]. Band 3, in the green spectral 

region with wavelengths from 0.53 to 0.59 µm, aids 

in identifying vegetation, urban areas, and 

sediments [65, 66]. Cadmium tends to accumulate 

in sediments and shallow water, particularly in 

areas impacted by mining, industrial, or agricultural 

activities [38, 67]. Bands 1 and 2 can reflect 

variations in water turbidity and suspended matter 

content, which are often associated with the 

presence or transport of cadmium in aquatic 

environments [66]. Changes in reflectance in 

Bands 1 and 2 may indicate soil erosion processes 

that carry cadmium into rivers and lakes [68]. Bare 

soil, sediments, or anthropogenic surfaces (e.g., 

urban areas, industrial waste sites) potential 

sources or accumulation zones for cadmium 

typically exhibit strong reflectance in the blue and 

green bands [69]. Consequently, Bands 2 and 3 

can assist in classifying land use types, thereby 

supporting the spatial assessment of cadmium 

pollution risks. Band 4, in the red spectral region 

with wavelengths from 0.64 to 0.67 µm, is sensitive 

to chlorophyll absorption and is used to evaluate 

plant health [65, 66]. Band 5, in the near-infrared 

(NIR) region with wavelengths from 0.85 to 0.88 

µm, exhibits strong reflectance from healthy 

vegetation and is employed to assess biomass 

density [65, 66]. Cadmium inhibits photosynthesis 

and induces physiological stress in plants, leading 

to leaf yellowing, reduced biomass, and tissue 

degradation [70-72]. These changes result in 

increased absorption in the red region (Band 4) 

and reduced reflectance in the NIR region (Band 

5). The combined use of Bands 4 and 5 can reflect 

the degree of plant health deterioration due to 

cadmium pollution. Band 6, in the shortwave 

infrared 1 (SWIR1) region with wavelengths from 

1.57 to 1.65 µm, provides information on soil 

moisture, minerals, and construction materials [65, 

66]. Band 7, in the shortwave infrared 2 (SWIR2) 

region with wavelengths from 2.11 to 2.29 µm, 

supports the identification of minerals and the 
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classification of soil and rock types [65, 66]. Bands 

6 and 7 are highly sensitive to hydroxyl-bearing 

minerals, soil moisture, and fine-grained materials 

[66]. Cadmium tends to accumulate in soils with 

high clay content, organic matter, or iron oxides 

[73, 74]. These mineral phases may produce 

characteristic absorption signals in the SWIR 

region, thereby aiding in the identification of areas 

with high potential for cadmium accumulation.  

 

Fig. 5. Ranking of the conditioning factors based 

on the OneR method 

The integration of Landsat 8 data thus serves 

to compensate for missing ground information 

while leveraging the 'black-box' learning 

capabilities of deep learning models. Feature 

importance ranking results indicate that all Landsat 

8 bands contribute to the prediction of Cd 

contamination in the study area (Fig. 5). 

Consequently, all 13 factors were selected as input 

parameters for developing machine learning 

models.  

5.2. Evaluation of the accuracy of the models 

The performance of the models was 

evaluated using a multi-criteria assessment 

method. Specifically, this involved a 

comprehensive analysis of evaluation metrics 

(AUC, ACC, PPV, NPV, SST, SPF, RMSE, and 

Kappa) across both the training and testing 

datasets. On the training dataset (Fig. 6a, Table 5), 

Random Forest (RF) exhibited the highest 

performance (AUC = 1.000, ACC = 100%, PPV = 

100%, NPV = 100%, SST = 100%, SPF = 100%, 

RMSE = 0.19, Kappa = 1), while Support Vector 

Machine (SVM) showed the lowest performance 

(AUC = 0.298, ACC = 37.14%, PPV = 37.14%, 

NPV = 37.14%, SST = 37.14%, SPF = 37.14%, 

RMSE = 0.53, Kappa = -0.26). On the testing 

dataset (Fig. 6b, Table 6), DNN-Opt2 

demonstrated the best performance (AUC = 0.858, 

ACC = 73.33%, PPV = 73.33%, NPV = 73.33%, 

SST = 73.33%, SPF = 73.33%, RMSE = 0.45, 

Kappa = 0.47), with SVM again recording the 

lowest performance. Although DNN-Opt2 exhibited 

lower performance than RF on the training dataset, 

an examination of the ROC curve (Fig. 6a) reveals 

that DNN-Opt2 displayed greater stability. 

Additionally, the RF model exhibited evaluation 

metrics indicative of overfitting (AUC = 1.000, ACC 

= 100%, PPV = 100%, NPV = 100%, SST = 100%, 

SPF = 100%, Kappa = 1.0) (Table 5). 

Consequently, we conclude that the RF model 

lacks consistent performance in this study. This 

may be attributed to the small dataset size (100 

samples, with 70 used for training), which could 

explain why commonly high-performing models 

such as LR, SVM, RF, and RBFN did not achieve 

high performance. For small datasets, identifying a 

suitable model based on evaluation metrics is 

essential. The DNN-Opt2 model demonstrated the 

most optimal performance across both the training 

and testing datasets. Therefore, DNN-Opt2 was 

selected as the model for predicting and 

establishing the Cd contamination potential map in 

the Gianh River basin. 

A comparison of the variants of the deep 

learning model DNN (DNN-Opt1, DNN-Opt2, DNN-

Opt3, DNN-Opt4) with machine learning models 

(LR, SVM, RF, RBFN) reveals that the DNN-Opt2 

model outperforms the others (Fig. 6a, 6b, Tables 

5, 6). Variations in the number of hidden layers and 

neurons within those layers lead to differing 

performance levels among the DNN models (Table 
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1). On the training dataset, an analysis of the 

metrics indicates that the DNN-Opt1 model, with 0 

hidden layers and 0 neurons in the hidden layer 

(Table 1), shows improved performance when 

modified to DNN-Opt2, which has 1 hidden layer 

and 8 neurons in the hidden layer (Table 1) (Fig. 

6a, Table 5). However, further increasing the 

number of hidden layers and neurons in DNN-Opt3 

and DNN-Opt4 results in a decline in performance 

(Fig. 6a, Table 5). On the testing dataset, DNN-

Opt2 exhibits the best performance among the 

DNN variants (DNN-Opt1, DNN-Opt3, DNN-Opt4).  
 

 

Fig. 6. Performance of the models based on ROC curve and AUC evaluation: (a) training dataset, (b) 

testing dataset 

Table 5. The evaluation results of the training dataset 

No Parameters 
Models 

DNN-Opt1 DNN-Opt2 DNN-Opt3 DNN-Opt4 LR RBFN RF SVM 

1 TP 19 15 34 32 29 26 35 13 

2 TN 17 32 8 14 26 28 35 13 

3 FP 16 20 1 3 6 9 0 22 

4 FN 18 3 27 21 9 7 0 22 

5 PPV (%) 54.29 42.86 97.14 91.43 82.86 74.29 100.00 37.14 

6 NPV (%) 48.57 91.43 22.86 40.00 74.29 80.00 100.00 37.14 

7 SST (%) 51.35 83.33 55.74 60.38 76.32 78.79 100.00 37.14 

8 SPF (%) 51.52 61.54 88.89 82.35 81.25 75.68 100.00 37.14 

9 ACC (%) 51.43 67.14 60.00 65.71 78.57 77.14 100.00 37.14 

10 Kappa 0.03 0.34 0.20 0.31 0.57 0.54 1.00 -0.26 

11 RMSE 0.49 0.48 0.49 0.49 0.41 0.41 0.19 0.53 

Typically, increasing the number of hidden 

layers and neurons in a deep learning model 

introduces more trainable parameters, which can 

lead to improved predictive performance. However, 

in this study, an opposite trend was observed: 

models with more complex architectures exhibited 

reduced performance. This outcome suggests that, 

under conditions of limited training data, increasing 

model complexity may lead to overfitting rather 

than performance gains. The use of multiple 
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parameter configurations was useful in identifying 

an optimal model structure suited to small-sample 

scenarios. 

Given the practical constraints in heavy metal 

pollution studies, particularly the high cost of soil 

sample collection and laboratory analysis—the 

findings highlight the importance of tailoring model 

complexity to dataset size. Future research could 

further explore the scalability of deep learning 

approaches by incorporating larger datasets to 

assess their potential for improved generalizability 

and accuracy in cadmium contamination mapping. 

Table 6. The evaluation results of the testing dataset 

No Parameters 
Models 

DNN-Opt1 DNN-Opt2 DNN-Opt3 DNN-Opt4 LR RBFN RF SVM 

1 TP 10 11 7 11 8 6 8 6 

2 TN 12 11 14 5 9 11 8 5 

3 FP 5 4 8 4 7 9 7 9 

4 FN 3 4 1 10 6 4 7 10 

5 PPV (%) 66.67 73.33 46.67 73.33 53.33 40.00 53.33 40.00 

6 NPV (%) 80.00 73.33 93.33 33.33 60.00 73.33 53.33 33.33 

7 SST (%) 76.92 73.33 87.50 52.38 57.14 60.00 53.33 37.50 

8 SPF (%) 70.59 73.33 63.64 55.56 56.25 55.00 53.33 35.71 

9 ACC (%) 73.33 73.33 70.00 53.33 56.67 56.67 53.33 36.67 

10 Kappa 0.47 0.47 0.40 0.07 0.13 0.13 0.07 -0.27 

11 RMSE 0.48 0.45 0.48 0.49 0.52 0.52 0.49 0.53 
 

5.3. Cd Contamination Potential map 

In Vietnam, the national technical regulation 

on soil quality, QCVN 03:2023/BTNMT [75], 

stipulates maximum permissible concentrations of 

various soil contaminants, including cadmium (Cd). 

While this regulation provides a legal threshold for 

assessing soil contamination, the Igeo, originally 

proposed by Müller (1969), offers a complementary 

approach by evaluating contamination levels 

relative to local geochemical background 

concentrations [47]. In this study, Igeo values in the 

Gianh River basin were rigorously computed based 

on region-specific baseline data. Accordingly, Igeo 

was adopted as a key indicator for classifying 

sampling locations into 'contaminated' and 'non-

contaminated' categories, providing labeled data 

for supervised learning model development. 

Based on the model’s performance 

evaluations presented in Section 4.2, the cadmium 

contamination potential map for the Gianh River 

Basin and its surrounding areas was generated 

using the DNN-Opt2 model (Fig. 7). The map is 

divided into five prediction classes ranging from 

low to high, determined by the natural breaks 

method [76]. In the study area, the 'very low' 

potential class accounts for 65.46% of the area, the 

'low' class for 13.71%, the 'moderate' class for 

10.52%, the 'high' class for 7.44%, and the 'very 

high' class for 2.87% (Fig. 7). The map results 

indicate that areas with high contamination 

potential are predominantly concentrated in urban 

zones and regions with high population density. 

The Cd contamination potential map was validated 

against the locations of analyzed soil samples, 

demonstrating highly reliable effectiveness. For the 

Cd-contaminated soil sample locations, 14 out of 

50 samples fall within the 'very high' potential class, 

16 out of 50 within the 'high' class, 20 out of 50 

within the 'moderate' class, and none within the 

'low' or 'very low' classes (Fig. 7). For the non-

contaminated soil sample locations, 2 out of 50 

samples are in the 'very low' class, 14 out of 50 in 

the 'low' class, 25 out of 50 in the 'moderate' class, 

8 out of 50 in the 'high' class, and 1 out of 50 in the 

'very high' class (Fig. 7). 

There remain instances where analyzed non-

contaminated soil samples are located in areas 

predicted as 'high' or 'very high.' This discrepancy 

is attributed to the prediction model’s error and 

could be improved by increasing the sample size. 
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Nevertheless, the prediction classes for Cd-

contaminated areas appear accurate, as no 

contaminated samples fall within the 'low' or 'very 

low' classes. Additionally, the Cd contamination 

potential map, constructed using the deep learning 

model DNN-Opt2, offers a novel approach to 

predicting and mapping Cd pollution risks 

compared to previous studies. Earlier studies on 

Cd pollution risk mapping typically relied on 

interpolating Cd content samples and then 

delineating contaminated zones based on Igeo 

index analysis. Consequently, the approach of 

applying machine learning to map Cd 

contamination potential provides a higher degree 

of objectivity. The Cd contamination potential map 

for the Gianh River basin could achieve greater 

accuracy with a larger number of analyzed soil 

samples and further testing of more optimized 

machine learning and deep learning models. 

The Cd contamination potential map for the Gianh 

River area serves as an effective tool for 

environmental managers in monitoring and 

mitigating Cd pollution and also provides critical 

spatial information for groundwater quality 

assessment and informed decision-making in 

infrastructure development, particularly in areas 

susceptible to heavy metal accumulation. 

 

Fig. 7. Cadmium contamination potential map in surface soil of Gianh river basin using DNN-Opt2 model 

6. Conclusion 

This study presents a robust and adaptable 

AI-driven framework for assessing cadmium 

contamination potential in surface soils, with a 

focus on applications relevant to civil engineering. 

Through a comparative analysis of machine 

learning and deep learning models, we 

demonstrated that structural optimization 

especially in terms of hidden layers and neuron 

configuration significantly affects model 

performance. The DNN-Opt2 model emerged as 

the most effective approach for the study area. 
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The resulting contamination potential map 

has practical implications for civil and 

environmental engineers, particularly in guiding the 

assessment of risks related to groundwater 

contamination and the durability of infrastructure in 

affected zones. Cd infiltration into groundwater can 

compromise potable water supplies, while 

prolonged soil contamination may accelerate 

structural degradation due to chemical interactions 

with foundations and construction materials. 
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