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Abstract: Marshall Stability (MS), a parameter that reflects the load-bearing 

capacity and deformation resistance of asphalt concrete, is critical for 

pavement performance and durability. This study assesses the predictive 

capability of five tree-based machine learning (ML) algorithms − Decision Tree 

Regression, CatBoost Regressor, Random Forest Regression, Extreme 

Gradient Boosting Regression, Light Gradient Boosting Machine − in 

estimating the MS of basalt fiber − modified asphalt concrete (BFMAC). A 

compiled database of 128 samples was used for model training. Models were 

optimized with GridSearchCV and 5-fold cross-validation (CV), assessed via 

multiple statistical metrics, while SHAP analysis provided model interpretability. 

Among the tested models, Random Forest Regression (RFR) demonstrated 

the highest predictive accuracy (R2 ≈ 0.922, RMSE ≈ 0.748 on the test set) and 

exhibited strong generalization capability. Interpretability analysis revealed that 

aggregate gradation (specifically, percentage of aggregate passing 2.36 mm 

and 4.75 mm sieves) and binder penetration were the most significant factors 

influencing MS prediction, followed by fiber content. This research underscores 

the potential of interpretable ML models, such as RFR, in accurately predicting 

MS, offering a viable alternative to conventional experimental methods for 

pavement material assessment. 
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1. Introduction 

Asphalt concrete (AC) is a commonly used 

material for surfacing high-grade highways and 

urban roads [1,2]. AC pavements offer numerous 

advantages, including smoothness, evenness, 

minimal dust and noise, relatively high strength, 

impermeability to prevent water infiltration into the 

subgrade and base course, complete 

mechanization from production to construction, 

immediate trafficability post-construction, and ease 

of maintenance and repair [3,4]. However, this type 

of pavement has fundamental drawbacks: 

temperature sensitivity, susceptibility to 

deformation at high temperatures, cracking at low 
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temperatures, cumulative non-recoverable rutting 

under repeated traffic loads, stripping under moist 

conditions, and shoving under high lateral forces 

[5]. These disadvantages are particularly evident in 

the operational performance of AC pavements 

using conventional asphalt binder under high 

ambient temperatures, heavy traffic volumes, and 

heavy axle loads. 

To enhance the mechanical properties of AC, 

various additives have been incorporated. 

Traditional additives such as polymers [6] and 

styrene-butadiene-styrene (SBS) [7,8], are used to 

improve elasticity and ductility, enabling the 

pavement to better withstand deformation and 

minimizing rutting and cracking. The incorporation 

of fibers contributes to the enhancement of the 

mechanical characteristics of AC. For instance, 

synthetic materials such as polyester and aramid, 

and mineral-based fibers like glass, carbon, 

cellulose, and basalt are introduced to elevate the 

tensile strength and toughness of the asphalt 

mixture [9–11]. These fibers facilitate stress 

distribution, mitigate cracking, and augment the 

load-bearing capability of the pavement structure. 

Utilizing both additives and fibers in combination 

allows for the optimization of AC's mechanical 

properties, consequently potentially improving the 

overall quality and service duration of the 

pavement. 

Among the fibers discussed, basalt fiber (BF) 

is identified as a natural, environmentally 

compatible, and non-toxic material [12–14]. For 

this reason, BF is increasingly regarded as a 

potential substitute for other fibers, like glass fiber, 

in reinforcement applications. Nevertheless, 

experimental investigations concerning BF-

modified asphalt concrete (BFMAC) are 

comparatively limited. This limitation introduces 

challenges associated with mixture design and the 

determination of optimal binder and fiber 

proportions. Within the studied properties of AC 

containing BF, Marshall Stability (MS) is a notable 

mechanical parameter applied in the Marshall mix 

design method. The MS value is defined by the 

maximum load a test specimen sustains before 

failure occurs [15,16]. This parameter is employed 

to evaluate the load-bearing capacity of AC under 

high-temperature conditions induced by traffic 

loading. Currently, MS is determined through 

laboratory testing. Although this approach provides 

accurate results and control over test input 

variables, it involves considerable expense, 

lengthy procedures, and requires technicians with 

specialized skills. Consequently, an alternative 

method is sought for the rapid determination of MS 

for BFMAC, which would provide a foundation for 

assessing other properties of this composite 

material. 

Progress in artificial intelligence (AI) over 

recent years has significantly broadened the 

applicability of machine learning (ML) algorithms 

across various domains, including complex 

engineering challenges [17–22]. In the context of 

pavement materials, ML has demonstrated 

exceptional efficacy in predicting the mechanical 

properties of AC. Gong et al. [23] utilized deep 

learning algorithms to estimate the MS of hot mix 

asphalt, while Behnood [24] applied biogeography-

based programming (BBP) and M5P model trees 

[25]. Similarly, Barugahare [26] employed bagged 

tree ensembles for MS prediction. These studies 

consistently highlight the robust predictive 

capabilities of AI models, achieving high 

coefficients of determination R2 ranging from 0.918 

[25] to 0.9781 [24]. Another study successfully 

predicted the Marshall parameters of stone matrix 

asphalt (SMA) using ANN techniques [27]. Xiao et 

al. [28] explored ANN applications in predicting the 

fatigue life of rubberized AC with reclaimed asphalt 

pavement (RAP), demonstrating superior 

performance compared to traditional statistical 

methods. Phung et al. [14] employed the XGBoost 

(XGB) algorithm to predict the MS and Marshall 

Flow (MF) of BFMAC, achieving impressive results 

with a Pearson correlation coefficient R = 0.9758 

for MS and equal 0.9085 for MF. Given these 

findings, ML algorithms, particularly decision tree-

based models, offer a powerful framework for 
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analyzing sensitivity and predicting the MS of 

BFMAC, paving the way for more efficient and cost-

effective pavement design and maintenance 

strategies. 

This study evaluates the performance of five 

tree-based algorithms-Decision Tree Regression 

(DTR), Random Forest Regression (RFR), 

CatBoost Regressor (CBR), Extreme Gradient 

Boosting Regression (XGBR), and Light Gradient 

Boosting Machine (LGBM)-in predicting the MS of 

BFMAC. For this purpose, a database comprising 

128 experimental results sourced from 

international studies was compiled, covering 

diverse conditions and material compositions. The 

models' performances were assessed using 

various statistical metrics, including the coefficient 

of determination (R2), mean absolute error (MAE), 

root mean squared error (RMSE), mean absolute 

percentage error (MAPE), and the A20 index. 

These metrics were calculated subsequent to 

hyperparameter optimization aimed at improving 

model predictive capabilities. Lastly, a sensitivity 

analysis was conducted to examine the influence 

of input parameters on the MS of BFMAC. This 

analysis helps determine the relative importance of 

each parameter regarding its effect on BFMAC 

performance. 

2. Materials and Methods 

2.1. Engineering background 

2.1.1. Marshall Stability of AC 

The Marshall mix design method is an 

empirical procedure for determining the optimal 

asphalt binder content in AC mixes. A principal 

parameter obtained from this method is MS, which 

is measured in accordance with standard protocols 

such as ASTM D6927. The MS value represents 

the maximum load that a cylindrical specimen, 

either 6-inch or 4-inch in diameter, can sustain at a 

constant 60°C temperature before failure. This 

value indicates the resistance of the mixture to 

permanent deformation, like rutting, when 

subjected to traffic loads. A higher MS value 

generally corresponds to a stiffer, more stable 

asphalt mixture capable of withstanding heavy 

loading. Since the laboratory determination of MS 

is a time-consuming process, the development of 

accurate predictive models provides an efficient 

alternative for optimizing mix design. 

2.1.2. The role of basalt fiber in AC 

Basalt fiber (BF) is a material derived from 

molten volcanic rock that exhibits high tensile 

strength, thermal stability, and durability. When 

incorporated into AC, BF forms a three-

dimensional reinforcing network within the asphalt 

binder and aggregate matrix (Fig. 1). This network 

serves to enhance binder cohesion, improve the 

tensile strength and fracture resistance of the 

mixture by bridging micro-cracks, and increase 

overall stiffness. The addition of BF is therefore 

expected to increase the mixture's resistance to 

rutting and fatigue cracking, which is reflected by 

an increase in the MS value. The efficacy of the 

fiber reinforcement is a function of parameters 

such as fiber content, length, and dispersion within 

the mixture. 

 
Fig. 1. Schematic illustration of BFMAC 

components 

2.2. Database acquisition 

A primary consideration when compiling a 

database from multiple sources is the consistency 

of the experimental procedures. To maintain 

uniformity, the source studies [29–47] were 

selected based on their adherence to standardized 

testing methods, principally ASTM D6927 or 

equivalent national standards. This selection 

process ensures that critical testing parameters, 
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such as the Marshall test temperature (60 °C) and 

compaction effort (75 blows), were consistent 

across the dataset. Minor variations in factors not 

explicitly modeled, for instance, aggregate 

mineralogy, are unavoidable and are treated as 

inherent noise within the data. The ten input 

parameters were selected due to their established 

significance in the asphalt mix design and 

pavement engineering literature, representing the 

principal properties of the constituent materials 

(BF, asphalt binder, and aggregates) that influence 

the mechanical performance of AC. This database 

consists of 128 test samples and includes ten input 

parameters: fiber tensile strength (X1), fiber 

content (X2), fiber length (X3), fiber diameter (X4), 

binder penetration (X5), binder softening point 

(X6), binder content (X7), and the percentage by 

weight of aggregate passing the 2.36 mm (X8), 

4.75 mm (X9), and 9.5 mm (X10) sieves. A detailed 

statistical summary for all input parameters and the 

output parameter (MS), including symbol, unit, 

minimum, median, average, maximum, standard 

deviation (StD), and skewness (Sk), is presented 

in Table 1. The specific ranges covered by the input 

parameters in the database are: fiber tensile 

strength (X1) from 0 to 4425 MPa; fiber content 

(X2) from 0 to 2%; fiber length (X3) from 0 to 24 

mm; fiber diameter (X4) from 0 to 17 µm; binder 

penetration (X5) from 55 to 92.3; binder softening 

point (X6) from 44.5 to 81; aggregate passing 2.36 

mm (X8) from 14.9% to 58.62%; aggregate 

passing 4.75 mm (X9) from 20.08% to 97.88%; and 

aggregate passing 9.5 mm (X10) from 50% to 

100%.  

Table 1. Input and output parameters employed for ML model development 

 Unit Min Median Average Max Std Sk 

Tensile strength (X1) MPa 0 2800 2800.66 4425 1092.16 0.92 

Content of fiber (X2) % 0 0.34 0.34 2 0.25 3.11 

Length of fiber (X3) mm 0 6 6.81 24 4.12 1.63 

Diameter of fiber (X4) µm 0 13 12.74 17 3.88 2.36 

Penetration (X5) 0.1mm 55 67.3 72.11 92.3 11.95 0.5 

Softening Point (X6) oC 44.5 51.9 56.89 81 10.38 0.46 

Content of binder (X7) % 4 5.2 5.43 10.39 1.06 2.3 

Aggregate 2.36 mm (X8) % 14.9 33.02 30.64 58.62 11.64 0.12 

Aggregate 4.75 mm (X9) % 20.08 49.3 43.22 97.88 16.9 0.65 

Aggregate 9.5 mm (X10) % 50 70.1 71.34 100 9 0.58 

Marshall stability (MS) kN 5.69 10.26 10.65 17.7 2.58 0.39 

Sk=Skewness; Std=Standard deviation

An examination of the correlation matrix for 

the input and output variables within the dataset 

was performed to analyze the characteristics of the 

collected data. Understanding the 

interrelationships among input variables, as well as 

their relationships with the output variable, is 

relevant for evaluating the relative contribution of 

the inputs. Accordingly, the distributions of the 

parameters and the correlations between them 

were analyzed, with the results presented 

graphically in Fig. 2. In this figure, positive 

correlation coefficients denote a positive linear 

relationship, while negative coefficients indicate a 

negative linear relationship. The magnitude and 

direction of these correlations are visually 

represented by the size and color of the circles; red 

indicates strong positive correlations and blue 

indicates strong negative correlations. The 

analysis indicates that certain pairs of input 

parameters exhibit relatively high correlation 

coefficients. For instance, X9 and X8 have a very 

high positive correlation coefficient of 0.95, 
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suggesting that these variables are closely related. 

Similarly, X5 shows a strong negative correlation 

with X3 (-0.75). Although high multicollinearity can 

negatively affect certain regression models, such 

as linear regression, by inflating the variance of 

coefficient estimates, a decision was made to 

retain all original input variables. This approach 

was adopted for two reasons. First, the study's 

objective is not limited to predicting MS but also 

includes interpreting the underlying material 

relationships. The retention of the original, 

physically meaningful engineering parameters is 

necessary for the interpretability of the SHAP 

analysis results. In contrast, variable reduction 

methods like Principal Component Analysis (PCA) 

generate abstract features, which obscures the 

direct connection to mix design parameters. 

Second, tree-based ensemble models, including 

RFR, are robust to multicollinearity. While 

multicollinearity may influence the allocation of 

feature importance between correlated variables, it 

generally does not degrade the model's overall 

predictive accuracy. Therefore, all ten input 

variables were retained to preserve interpretability 

without a substantive loss in predictive 

performance. 

 

Fig. 2. Correlation matrix of the input and output variables 
 

Fig. 3 shows the frequency distributions for 

the input and output parameters, comprising fiber 

tensile strength, fiber content, fiber length, fiber 

diameter, binder penetration, binder softening 

point, binder content, aggregate passing 2.36 mm, 

aggregate passing 4.75 mm, and aggregate 

passing 9.5 mm. A significant number of fibers 

have very low tensile strength (<1000 MPa), 
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suggesting variability in material quality or 

composition. The data suggests that the content of 

fiber is generally low, with a narrow range of 

variation. The most fibers fall within a specific 

diameter range, contributing to consistent material 

characteristics. Besides, there is significant 

variability in penetration values, suggesting 

differences in material consistency or composition. 

And the most materials soften within a specific 

temperature range (50–70°C), with some outliers 

reaching up to 80°C. Content of binder is generally 

low (4-6%) and tightly distributed among samples. 

MS values are distributed across a wide range, 

from 7.5 kN to 17.5 kN, with smaller peaks 

observed at 12.5 kN and 15 kN. This suggests 

variability in material stability, with most samples 

exhibiting moderate stability values. Furthermore, 

the dataset contains samples where the fiber 

content (X2) is zero. These data points represent 

conventional AC without fiber modification and 

were included to serve as a baseline for the 

models. The presence of this control group enables 

the quantification of the incremental effect of fiber 

addition relative to a zero-content reference. This 

approach improves the model's generalization 

capability across a wider range of mix designs and 

allows for a more comprehensive sensitivity 

analysis of the fiber content parameter. 

  

  

  

Fig. 3. Distribution of Inputs and Outputs 
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Fig. 3. (continued) 

Each database was partitioned into two 

subsets: a training set, comprising 70% of the data, 

allocated for developing the ML models, and a 

testing set, containing the remaining 30%, 

reserved for evaluating model accuracy. 

Maintaining separation between the training and 

testing datasets is standard practice. Specifically, 

the testing data are not utilized during the model 

development process and remain unexposed to 

the models until the final evaluation phase. This 

methodological separation facilitates an objective 

assessment of the models' predictive performance 

on previously unobserved data. Additionally, 

feature scaling was not applied to the input 

variables. This preprocessing step was omitted 

due to the robustness of the selected tree-based 

models to the scale and distribution of the input 

features. These models function by partitioning 

data based on threshold values, a process that is 

unaffected by monotonic transformations of the 

variables. 

2.3. ML methods 

In this study, five tree-based ML algorithms 

were selected to predict the MS of BFMAC. These 

models were chosen for several reasons. First, 

they are effective for processing tabular data and 
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can model the complex, non-linear relationships 

between input features and the target output that 

are common in materials engineering. Second, 

compared to other algorithms such as neural 

networks or support vector machines, they exhibit 

low sensitivity to the scale of input variables and do 

not require data preprocessing like normalization 

or standardization. Finally, tree-based models, 

particularly when combined with techniques like 

SHAP, are highly interpretable, permitting an 

examination of the factors driving the predictions. 

This characteristic aligns with the study's objective 

to not only predict MS but also to understand the 

underlying material behavior. 

2.3.1. Decision Tree Regression 

Decision Tree Regression (DTR) is a 

fundamental non-parametric supervised learning 

algorithm that predicts a target value by learning 

simple decision rules inferred from the data 

features [48]. The model recursively partitions the 

dataset into smaller, more homogeneous subsets 

based on the input features. At each node, the 

algorithm selects the feature and split point that 

results in the greatest reduction in variance (for 

regression tasks). This process continues until a 

stopping criterion, such as a maximum tree depth 

or a minimum number of samples per leaf, is met. 

The final prediction for a given data point is the 

average of the target values in the terminal node 

(leaf) it falls into. While DTR models are highly 

interpretable and easy to visualize, their primary 

limitation is a strong tendency to overfit the training 

data, capturing noise rather than the true 

underlying signal. This high variance can be 

mitigated by using them as base learners in 

ensemble methods. 

2.3.2. Random Forest Regression 

RFR is a powerful ensemble learning 

technique designed to overcome the overfitting 

problem of individual DT [49]. It operates by 

constructing a multitude of DT at training time using 

a method called bagging, or bootstrap aggregating. 

The process involves two key steps of 

randomization: 

1. Row sampling: Each tree is trained on a 

different random sample (a "bootstrap 

sample") drawn with replacement from the 

original training dataset. 

2. Feature sampling: At each split in a tree, only 

a random subset of the total features is 

considered for finding the best split. 

By averaging the predictions of all the 

individual trees, the RFR model reduces variance 

and produces a more stable and accurate 

prediction. This diversification strategy makes RFR 

robust to noise and less prone to overfitting, while 

still retaining the ability to capture complex 

interactions and provide feature importance 

rankings. 

2.3.3. CatBoost Regressor 

CatBoost Regressor (CBR) is a state-of-the-

art gradient boosting algorithm that is particularly 

powerful for datasets containing categorical 

features [50,51]. While it is built on the same 

boosting principles as other gradient boosting 

methods, where models are trained sequentially to 

correct the errors of their predecessors, CBR 

introduces several unique innovations. Its most 

significant advantage is its sophisticated handling 

of categorical data. It employs a special technique 

called ordered boosting, a permutation-based 

approach, to process categorical features without 

causing "target leakage," a common issue in other 

gradient boosting implementations that can lead to 

overfitting. Furthermore, CBR grows symmetric (or 

oblivious) trees, meaning the same splitting 

criterion is used across an entire level of the tree. 

This structure acts as a form of regularization, 

helps prevent overfitting, and allows for very fast 

model prediction. These features make CBR a 

robust and highly effective algorithm. 

2.3.4. Extreme Gradient Boosting Regression 

Extreme Gradient Boosting Regression 

(XGBR) is an advanced and highly efficient 

implementation of the gradient boosting framework 

[52]. While it follows the same core principle of 

sequential error correction as GBR, XGBR 

introduces several key improvements that enhance 
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both performance and computational speed [53]: 

1. Regularization: XGBR incorporates both L1 

(Lasso) and L2 (Ridge) regularization terms 

into its objective function. This penalizes 

model complexity and helps prevent 

overfitting, which is a significant advantage 

over standard GBR. 

2. Optimized algorithm: It employs a more 

efficient, cache-aware algorithm with parallel 

and distributed computing capabilities, 

leading to significantly faster training times 

on large datasets. 

3. Handling of missing values: XGBR has a 

built-in routine for handling missing data, 

which simplifies the data preprocessing 

pipeline. 

These enhancements have made XGBR a 

dominant algorithm in many ML competitions and 

real-world applications. 

2.3.5. Light Gradient Boosting Machine 

The Light Gradient Boosting Machine 

(LGBM) is a more recent gradient boosting 

framework designed for even greater speed and 

efficiency, particularly with large datasets [54]. It 

introduces two novel techniques to achieve this: 

1. Gradient-based one-side sampling (GOSS): 

Instead of using all data instances to 

compute the information gain for a split, 

GOSS retains all instances with large 

gradients (i.e., data points that are poorly 

predicted) and performs random sampling on 

those with small gradients. This focuses the 

training process on the more "difficult" data 

points without losing accuracy. 

2. Exclusive feature bundling (EFB): It bundles 

mutually exclusive features (i.e., features 

that rarely take non-zero values 

simultaneously) together, reducing the 

number of features and speeding up training. 

Furthermore, LGBM grows trees leaf-wise 

rather than level-wise (as in most other tree 

algorithms), which allows it to converge more 

quickly and often results in lower loss for the same 

number of leaves. These optimizations make 

LGBM an extremely fast and memory-efficient 

choice. 

2.3.6. Cross-validation 

In the field of ML, the phenomenon of 

overfitting occurs when a model learns the training 

data too well, capturing its inherent noise and 

specific patterns. This overfitting can lead to 

reduced generalization ability, manifesting as 

inaccurate predictions and diminished predictive 

accuracy on unseen validation datasets. CV is a 

technique frequently employed to address this 

problem. When training ML models with K-fold CV, 

the dataset is randomly partitioned into subsets. 

The dataset was partitioned into a training set, 

containing 70% of the data, and a testing set, 

comprising the remaining 30%. To facilitate an 

objective assessment of the model's generalization 

performance, the testing set was kept separate and 

was not involved in the model training procedures. 

Thus, the model had no exposure to the test set 

data during the training phase. The training dataset 

itself was further processed using K-fold CV. This 

involved dividing the training data into K subsets, 

or folds, of approximately equal size. The model 

training process was then repeated K times. In 

each iteration, one distinct fold was utilized as a 

validation set, for purposes such as 

hyperparameter tuning, while the model was 

trained on the combined data from the other K-1 

folds. The final performance evaluation is 

determined by averaging the evaluation outcomes 

from each of the K training runs. It is generally 

recommended that K not be set to an excessively 

high value. A large K can result in a validation set 

that is substantially smaller than the training set 

[55]. In such a case, the evaluation results may not 

accurately reflect the true generalization capacity 

of the ML methodology, especially when dealing 

with large-scale datasets. For this study, K-fold CV 

with K = 5 is implemented. 

2.3.7. Grid SearchCV 

The hyperparameters of the ML algorithm 

affect the accuracy of the model [56]. 

Hyperparameters cannot be estimated directly 
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from the learning data, they must be established 

before training a model because these 

hyperparameters define the architecture of an ML 

model [57]. Therefore, to fit an ML model for 

different problems, the hyperparameters need to 

be tuned. GridSearchCV is a fundamental 

technique used for hyperparameter optimization in 

ML. 

The fundamental operating principle of 

GridSearchCV involves a systematic, exhaustive 

search across a user-defined, discrete 

hyperparameter space, commonly referred to as a 

"grid." This grid is constructed by specifying a finite 

set of candidate values for each hyperparameter 

under investigation. The algorithm proceeds by 

methodically generating and evaluating every 

unique combination of these hyperparameter 

values. For each generated combination, one ML 

model is instantiated, trained, and subsequently 

assessed. Crucially, the performance evaluation 

for every parameter set is conducted using a k-fold 

CV technique. This integration of CV serves to yield 

a robust estimate of the model's generalization 

performance for the given hyperparameters. 

2.3.8. Shap values 

A unified strategy for deciphering the results 

of any ML model is provided by the SHAP (SHapley 

Additive exPlanations) values paradigm, 

developed by Lundberg and Lee [58]. For a given 

prediction, each feature is assigned an importance 

score. This is accomplished by assessing all 

potential feature sets and calculating each 

feature's effect on the disparity between the 

model’s prediction with and without it. For 

sensitivity analysis, the SHAP values technique is 

extremely beneficial, yielding a lucid and reliable 

method to grasp how input variables affect the 

model's output. When forecasting the MS of AC 

using BF, one can employ SHAP values to identify 

the primary determinants that affect the model's 

forecasts, thus delivering deep insight into the 

complex connections linking mixture attributes and 

performance. 

2.3.9. Metrics 

To assess the predictive accuracy of ML 

models, five standard statistical metrics are 

employed, including R2, MAE, RMSE, MAPE, and 

A20 index. R2, which ranges from 0 to 1, indicates 

the correlation between actual and predicted 

experimental values, with a value of 1 signifying a 

perfectly accurate model and 0 an imperfect one 

[59]. Conversely, RMSE, MAE, MAPE, and A20 

quantify the average deviation between observed 

and anticipated results. Specifically, a ML model 

exhibits greater quantitative precision when RMSE, 

MAE, MAPE, and A20 values are lower, and R2 

approaches one. The formula for determining the 

above performance indicators can be found in 

research [60]. 

3. Results and discussions 

The outcomes and analysis of the ML model 

development are presented in this section. Initially, 

the selection of hyperparameters for the different 

models under consideration is detailed. Following 

this, the performance of the developed models is 

evaluated, and a comparison is made to ascertain 

the most effective methodology. 

3.1. ML hyperparameter selection 

The specific hyperparameters and their 

corresponding value ranges that were explored 

during the development and optimization of the ML 

models are outlined in Table 2. This systematic 

exploration ensured a thorough search for the 

optimal model configurations. For the learning_rate 

parameter, a search was conducted over the range 

of 0.01 to 0.3 using nine equal increments, with an 

additional value of 0.5 included to evaluate model 

performance at a higher rate. Tree complexity was 

controlled by varying the maximum depth between 

3 and 10, and the number of leaves (for applicable 

models) from 15 to 63. The number of trees in the 

ensemble, specified as n_estimators or iterations, 

was varied from 50 to 500 to assess the effect of 

ensemble size on model performance. These 

selected ranges are suitable for developing robust 

ML models as they include commonly suggested 

values and allow for a broad investigation of 

different model structures and learning dynamics. 
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This comprehensive search space increases the 

probability of identifying hyperparameter 

combinations that produce optimal predictive 

performance for the given dataset, as explored 

through methods such as GridSearchCV 

mentioned in the methodology.  

Table 2. Input and output parameters utilized for model development 

Hyperparameter Values in grid 

'learning_rate' 0.01, 0.0422, 0.0744, 0.1067, 0.1389, 0.1711, 0.2033, 0.2356, 

0.2678, 0.3, 0.5 

'max_depth' / 'depth' (Max tree depth) 3, 4, 5, 6, 7, 8, 9 

'n_estimators', 'iterations' (Number of 

Trees) 

10, 20, 30, 40, 50, 60, 70 ,80, 90, 100, 150, 200, 250, 300, 350, 

400, 450, 500 

'num_leaves' 15, 20, 26, 31, 36, 42, 47, 52, 58, 63 

Table 3 summarizes the results of the 

hyperparameter optimization process conducted 

using 5-fold CV. The optimal set of 

hyperparameters ('Best_Params') for each 

evaluated model (CBR, XGBR, RFR, LGBM, DTR) 

was identified using GridSearchCV. The selection 

criterion was the minimization of the mean RMSE 

across the validation folds. This score, denoted as 

the 'Mean CV Score (RMSE)', provides a robust 

estimate of a model's generalization performance 

on the training data. It was the primary criterion for 

selecting the final model configuration prior to 

evaluation on the independent test set. The results 

indicate the optimal configurations identified within 

the search space defined; for instance, the CBR 

model demonstrated the best performance with a 

depth of 5, 500 iterations, and a learning rate of 0.3, 

achieving the lowest CV score of 1.046. The 

varying optimal parameters across models 

emphasizes the need for algorithm-specific tuning. 

Presenting these hyperparameter search results 

represents a standard step in thorough ML model 

development, demonstrating the process of 

selecting the most promising configurations for 

each algorithm prior to final performance 

evaluation on unseen data. 

Table 3. Hyperparameter optimization results 

Model Best_Params Mean CV Score (RMSE) 

CBR 'depth': 5, 'iterations': 500, 'learning_rate': 0.3 1.046 

XGBR 'learning_rate': 0.5, 'max_depth': 3, 'n_estimators': 250 1.072 

RFR 'max_depth': 8, 'max_features': 1.0, 'n_estimators': 150 1.122 

LGBM 'learning_rate': 0.3, 'max_depth': 3, 'num_leaves': 15 1.308 

DTR 'max_depth': 6, 'max_leaf_nodes': 20, 'min_samples_split': 3 1.331 

Fig. 4 provides a comparative visualization of 

the prediction error, specifically the RMSE, for the 

five evaluated ML models (CBR, XGBR, RFR, 

LGBM, and DTR). The comparison is illustrated 

across three distinct datasets: the training set 

(Train Data), the CV results (Validation Data), and 

the independent test set (Test Data). The height of 

the bars indicates the mean RMSE, while the error 

bars shown for the CV data represent the variability 

of the RMSE across the different CV folds. The 

results depicted were obtained subsequent to the 

identification of the optimal hyperparameters for 

each model through a search process. Each 

optimized model was trained using the designated 

training dataset. Its performance was then 

evaluated using the RMSE metric on the training 

data itself, through a 5-fold CV procedure (implied 

by CV5) using the training data partitions, and 

finally on the unseen test dataset to assess 

generalization capability. 

General trends in performance (RMSE) 

across the three data partitions are evident. Lower 
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RMSE values indicate improved model 

performance. Regarding training performance, the 

CBR and XGBR models achieved notably low 

RMSE values, significantly lower than the other 

models. The RFR model also exhibited a low 

training RMSE, while the DTR and LGBM models 

showed higher training errors. In terms of CV 

performance, the RFR, CBR, and XGBR models 

demonstrated comparable average RMSE values 

(around 1.0-1.1), which were lower than those for 

the LGBM and DTR models (around 1.3). However, 

the error bars for the CV results were considerably 

large for all models, indicating substantial 

performance variation across the different data 

folds. Concerning test performance, the RFR and 

CBR models demonstrated the lowest RMSE 

(approximately 0.75) on the independent test set, 

suggesting the best generalization performance 

among the models tested. The XGBR, DTR, and 

LGBM models showed higher RMSE values on the 

test set (around 1.07-1.14). Comparisons reveal a 

significant difference between the training RMSE 

and the CV/test RMSE for the CBR and XGBR 

models, suggesting that these models may be 

overfitting the training data. The RFR model 

showed a smaller gap between training and 

test/CV performance, indicating potentially better 

generalization. 

Fig. 4 effectively illustrates the critical trade-

off between model fitting and generalization. While 

the CBR and XGBR models demonstrated a strong 

capacity to learn the training data, their higher 

errors on the CV and test sets suggest overfitting. 

The DTR model, being a single DT, likely has high 

variance, reflected in its relatively poorer 

performance. The RFR and CBR models emerged 

as the top performers on the unseen test data, 

achieving the lowest RMSE. The RFR model, in 

particular, appears to achieve a favorable balance, 

avoiding the extreme overfitting observed in the 

CBR/XGBR models while still achieving strong 

predictive accuracy on the test set. The large 

variance observed during CV (error bars) for all 

models might indicate sensitivity to the specific 

training data subsets, suggesting that while the 

RFR and CBR models perform best on average, 

performance could fluctuate depending on the data 

encountered. The advantage of ensemble methods 

such as RFR, CBR, and XGBR over a single DTR 

is evident in the generally lower errors. 

 

Fig. 4. Comparison of model RMSE on Train, CV, 

and Test sets 

The application of ML models, including 

ensemble techniques such as RFR, Gradient 

Boosting variants (XGBR, LGBM, CBR), and DTR, 

to predict MS and other AC properties aligns with 

recent research trends in the literature. Studies 

support the effectiveness of these approaches 

compared to traditional methods. A direct 

comparison of the RMSE values obtained here 

(~0.75 for the best models on the test set) with 

specific prior studies is challenging due to 

variations in datasets (e.g., different aggregate 

types, use of fibers such as carbon, basalt, or 

waste tire metal), input features, and reported 

performance metrics. While this study focused on 

tree-based models due to their interpretability and 

performance on tabular data, the results can be 

contextualized with findings from other ML families, 

such as Artificial Neural Networks (ANN) and 

Support Vector Regression (SVR). For instance, 

Upadhya et al. [15] reported an R² value of 0.86 for 

an ANN model predicting the MS of carbon fiber-

reinforced asphalt. Nguyen et al. [27] achieved 

high predictive accuracy for Marshall parameters of 

stone matrix asphalt with hybrid AI models, and 
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other studies have demonstrated the utility of ANNs 

for predicting various asphalt properties [28]. The 

best-performing RFR model from the current work, 

with an R² of 0.922 on the test set, exhibits a level 

of accuracy competitive with, and in some cases 

exceeding, that of these alternative approaches. 

This result indicates that the focus on tree-based 

ensembles yielded high predictive accuracy while 

maintaining model interpretability, a primary 

objective of this investigation. 

Table 4. Model evaluation results 

 

                   Models      

Metrics 
RFR CBR XGBR DTR LGBM 

Train 

MAE 0.291 0.026 0.028 0.422 0.469 

RMSE 0.482 0.079 0.079 0.539 0.801 

R2 0.964 0.999 0.999 0.955 0.901 

MAPE 2.907 0.294 0.309 4.175 4.813 

A20 98.039 100 100 100 96.078 

Test 

MAE 0.53 0.423 0.516 0.837 0.758 

RMSE 0.748 0.757 1.071 1.103 1.14 

R2 0.922 0.92 0.84 0.83 0.818 

MAPE 5.598 4.096 5.006 8.425 8.268 

A20 92.308 92.308 92.308 88.462 84.615 

All 

MAE 0.339 0.106 0.127 0.507 0.528 

RMSE 0.547 0.348 0.488 0.692 0.881 

R2 0.955 0.982 0.964 0.928 0.883 

MAPE 3.453 1.066 1.263 5.038 5.515 

A20 96.875 98.438 98.438 97.656 93.75 
 

Table 4 presents a detailed quantitative 

assessment of the predictive performance for the 

five ML models (RFR, CBR, XGBR, DTR, LGBM). 

It expands on the evaluation shown in Fig. 4 by 

utilizing a broader suite of statistical metrics: MAE, 

RMSE, R2, MAPE, and the A20 index. Consistent 

with the trend observed in Fig. 4's RMSE, RFR and 

CBR achieved the highest R2 scores on the test set 

(0.922 and 0.920), indicating that they account for 

the largest proportion of variance in the unseen 

data. XGBR, DTR, and LGBM followed with lower 

test R2 values. When considering average error 

magnitude, CBR demonstrated slightly lower MAE 

(0.423) and MAPE (4.096%) on the test set 

compared to RFR (MAE: 0.530, MAPE: 5.598%). 

This suggests that CBR may have slightly smaller 

average prediction errors, even though RFR 

exhibited marginally better RMSE and R2. The A20 

index indicated high reliability for most models on 

the test set, with RFR, CBR, and XGBR all 

predicting over 92% of instances within a 20% error 

margin. LGBM had the lowest A20 score at 84.6%. 

The table clearly quantifies the overfitting 

discussed previously; for example, CBR's R2 

decreased from 0.999 (Train) to 0.920 (Test), while 

RFR showed better stability (0.964 to 0.922). 

Similar trends were observed for MAE and MAPE 

values between the Train and Test sets. Although 

both CBR and RFR were the two highest-

performing models on the test set, RFR was 

selected as the optimal model because of its 

generalization capability and resistance to 

overfitting. As indicated, a considerable 

discrepancy exists between the training and testing 

performance of the boosting models, particularly 

CBR. The CBR model yielded an R2 of 0.999 and 

an MAE of 0.026 on the training data, an outcome 

that suggests it overfitted the training samples. 

This is supported by the subsequent decrease in 

performance on the independent test data 

(R2=0.920, MAE=0.423). In contrast, the RFR 

model exhibited greater stability, with a smaller 

difference between its performance on the training 

set (R2=0.964, MAE=0.291) and the test set 
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(R2=0.922, MAE=0.530). While the test MAE and 

MAPE for the CBR model were slightly lower, the 

RFR model's resistance to overfitting indicates 

greater reliability and a higher likelihood of 

consistent performance on new data. For practical 

engineering applications, this robustness is 

preferable to a minor improvement in a single error 

metric. Consequently, RFR was identified as the 

most suitable overall model. 

Fig. 5 comprises the bar charts that provide 

a visual comparison of key performance metrics for 

the five ML models. The bar chart format facilitates 

rapid comparisons between models and datasets 

for the crucial metrics. It renders performance 

differences and the extent of overfitting (the train-

test performance gap) readily apparent. By 

visualizing all the metrics, the figure supports a 

balanced assessment, confirming that while RFR 

and CBR show some indications of higher training 

performance compared to testing, they generalize 

significantly better than the other models and 

produce the most accurate predictions on unseen 

data based on both explained variance and 

average error magnitude. 

  

  

 

Fig. 5. Comparison of models’ performance 



JSTT 2025, 5 (3), 1-24                                                   Hoang et al 

 

 
15 

3.2. Model performance 

This subsection provides a visual evaluation 

of the performance and predictive accuracy of the 

RFR model, which was determined to be the best-

performing model based on the quantitative 

metrics. This visual assessment complements the 

numerical results by demonstrating the model's 

behavior through regression and prediction 

comparison plots, specifically Figs. 5 and 6. 

Fig. 6 presents regression plots that compare 

the RFR model's predicted MS values with the 

actual experimental values. Separate plots are 

provided for the Training, Testing, and the 

combined All datasets, facilitating a visual 

inspection of both model fit and its capacity to 

generalize to unseen data. Based on the expected 

content, these plots are anticipated to show data 

points clustering closely around the line of perfect 

agreement (y=x), particularly for the testing 

dataset, visually corroborating the high R2 value 

previously reported for the RFR model. Any 

observable differences in the scatter of points 

between the training and testing plots would further 

illustrate the model's generalization capability. 

  

 

Fig. 6. Regression analysis for Training, Testing and All dataset 

Further assessment is provided in Fig. 7, 

which directly compares the predicted MS values 

from the RFR model against the actual 

experimental values for the dataset samples. 

Based on the expected content, this plot is 

anticipated to demonstrate how effectively the 

predicted values track the actual measurements 

across the data range. It allows for a visual check 

of the magnitude of prediction errors (the 

deviations between predicted and actual points) 

and helps identify any potential systematic error 

patterns, such as consistent over- or under-

prediction in specific value ranges. The distribution 

of residuals for the Training set (a) exhibits a tight 

concentration around zero, visually reflecting the 

very low training errors reported. For the Testing 
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set (b), the spread is noticeably wider, indicating 

larger prediction errors when the model 

generalizes to unseen data; most test residuals 

appear to fall within approximately -1.5 kN and +1.5 

kN. The overall shape in all plots is roughly 

unimodal and somewhat bell-shaped, although 

potentially exhibiting slight skewness. The green 

cumulative percentage lines illustrate the 

accumulation of errors. For instance, on the test set 

(b), the curve indicates that a large majority (likely 

around 80-90%) of the residuals fall below +1 kN. 

In summary, the visual evidence presented is 

expected to support the quantitative findings. 

These visualizations confirm the high accuracy and 

robust generalization ability of the selected RFR 

model for predicting MS from the given input 

features, thereby confirming its suitability for this 

engineering prediction task. 

  

 

Fig. 7. Histogram showing the comparison between predicted and actual values 

3.3. Sensitivity analysis 

To interpret the predictions of the RFR model 

and examine the factors influencing MS, a 

sensitivity analysis was conducted using SHAP 

(SHapley Additive exPlanations). Local (per-

instance) and global (overall) views of the feature 

impacts are presented in Fig. 8 and Fig. 9. Fig. 8 

presents a SHAP summary plot, designed to 

elucidate the output of the ML model, presumably 

the best-performing RFR model. It illustrates the 

importance and impact of each input feature (X1 

through X10) on the prediction of MS. Features are 

ranked vertically based on their overall importance, 

and for each feature, the plot displays the 

distribution of SHAP values across all samples, 

where each dot represents a single prediction. The 

color of each dot indicates the original value of that 

feature for that prediction (red for high values, blue 

for low values), while its horizontal position shows 

the SHAP value – the impact of that feature on the 

model output for that specific prediction (positive 

values increase the prediction, negative values 

decrease it). 

The analysis indicates that aggregate 



JSTT 2025, 5 (3), 1-24                                                   Hoang et al 

 

 
17 

gradation features, specifically X8 (Aggregate 2.36 

mm) and X9 (Aggregate 4.75 mm), are the most 

influential factors. These are followed in 

descending order of importance by X5 

(Penetration), X2 (Content of fiber), and X7 

(Content of binder). Conversely, features related to 

fiber properties, such as X1 (Tensile strength) and 

X4 (Diameter of fiber), had the least influence on 

the model's predictions. 

The color-coding reveals how feature values 

relate to prediction impact. For the most important 

features, X8 and X9, higher values (red dots) are 

generally associated with positive SHAP values, 

meaning higher percentages of these aggregates 

tend to increase the predicted stability. For X5 

(Penetration), the relationship appears inverse: 

higher penetration values (red dots, softer binder) 

correspond to negative SHAP values, decreasing 

predicted stability. For X2 (Content of fiber), higher 

fiber content (red dots) generally leads to positive 

SHAP values, increasing predicted stability. X7 

(Content of binder) shows that higher values (red) 

tend to have positive SHAP values, increasing 

stability. 

 

Fig. 8. SHAP summary plot illustrating feature impacts on MS prediction 
 

The SHAP summary plot provides the RFR 

model's internal logic, enhancing its interpretability 

beyond simple accuracy metrics. These findings 

are consistent with established principles of 

asphalt pavement engineering. The high 

importance of X8 and X9 indicates that the 

aggregate skeleton and the degree of interlock 

between particles are principal contributors to the 

mixture's load-bearing capacity and resistance to 

deformation, which are properties quantified by the 

MS value. The model shows that higher 

percentages of these aggregate fractions are 

associated with positive SHAP values, thereby 

increasing the predicted MS. The importance of 

Penetration is also consistent with existing 

knowledge; high penetration values correspond to 

negative SHAP values, indicating that softer 

binders reduce the stiffness and stability of the 
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mixture. The SHAP analysis for X2 (Content of 

fiber) indicates what may appear to be a counter-

intuitive relationship. The model shows that higher 

fiber content is generally associated with negative 

SHAP values, suggesting a decrease in the 

predicted MS. This finding seems to contradict the 

expected reinforcing role of fibers; however, the 

result can be explained by the concept of an 

optimal fiber content in composite materials. 

Although adding fibers can improve mixture 

properties up to a certain threshold, excessive 

quantities can negatively affect performance. High 

fiber volumes may lead to clumping, poor 

dispersion within the binder, and an increase in air 

voids, all of which can disrupt the integrity of the 

aggregate skeleton and reduce the mixture's 

stability. It is likely that the model reflects instances 

in the training data where fiber content exceeded 

this optimal threshold, thus identifying its negative 

impact on stability in those cases. 

 

Fig. 9. Global feature importance based on mean absolute SHAP values 

Fig. 9 presents a horizontal bar chart 

summarizing the global importance of each input 

feature (X1 through X10) based on the mean 

absolute SHAP value derived from the ML model, 

presumably the RFR model. The features are 

ranked vertically in descending order of 

importance, with the most important feature at the 

top. The length of each bar, along with the 

corresponding numerical value displayed, 

quantifies the average absolute impact of that 

feature on the model's prediction of MS across all 

samples in the dataset. The bar chart provides a 

direct ranking of feature importance. It 

quantitatively confirms that X8 (Aggregate 2.36 

mm) has the highest mean absolute SHAP value 

(≈0.854), establishing it as the most influential 

predictor. It is followed in order by X9 (Aggregate 

4.75 mm) (≈0.717), X5 (Penetration) (≈0.423), and 

X2 (Content of fiber) (≈0.241). The plot visually and 

numerically illustrates the relative differences in 
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importance. For instance, the impact of X8 is 

substantially greater than all other features, and a 

noticeable decrease in importance occurs after the 

top four features (X8, X9, X5, X2). Features X1, X4, 

and X10 exhibit the lowest average impact on the 

predictions. This ranking, based on mean absolute 

SHAP values, is consistent with the overall 

importance suggested by the visual spread in the 

previous SHAP summary plot. 

Fig. 9 effectively summarizes the global 

feature importance findings from the SHAP 

analysis into a clear, easily interpretable format. By 

averaging the absolute SHAP values, it provides a 

definitive ranking of which input variables exert the 

most influence on the RFR model's MS predictions. 

The results strongly suggest that aggregate 

grading, specifically the percentages of 2.36 mm 

and 4.75 mm aggregates, and binder penetration 

are the primary factors the model relies upon, 

followed by fiber content. This concise summary is 

useful for identifying the key drivers learned by the 

model and aligns well with the principles of asphalt 

mix design, where aggregate structure and binder 

properties are known to be critical for stability. 

Additionally, while a sensitivity analysis could be 

performed by removing low-impact features (e.g., 

X1, X4) and retraining the model, the SHAP 

analysis provides a more detailed assessment, as 

it quantifies the marginal contribution of each 

feature to every individual prediction. Given the low 

mean SHAP values for X1 and X4 (0.067 and 

0.087, respectively), their contribution to the 

model's predictive accuracy is negligible. 

Therefore, the removal of these features would be 

unlikely to substantively alter the results, and the 

present analysis is sufficient to demonstrate their 

limited influence on the model's predictions. 

4. Conclusions and Perspectives 

This investigation successfully developed 

and evaluated several ML models for the prediction 

of MS of AC, based on key material properties and 

mix design parameters. Through a rigorous 

comparison employing multiple performance 

metrics and CV, the RFR model was identified as 

the most effective, demonstrating high accuracy 

(R2 ≈ 0.922 on the test set) and strong 

generalization capabilities. Visual assessments 

through regression analysis and residual 

distribution plots further corroborated the RFR 

model's reliability and unbiased predictive 

performance. Interpretability analysis utilizing 

SHAP revealed the key factors influencing the RFR 

model's predictions. Aggregate characteristics, 

specifically the percentages passing the 2.36 mm 

(X8) and 4.75 mm (X9) sieves, along with binder 

penetration (X5) and fiber content (X2), were 

identified as the most influential variables. These 

findings are consistent with fundamental principles 

of asphalt mix design, enhancing confidence in the 

model's learned relationships. 

The results emphasize the considerable 

potential of ML, particularly ensemble methods 

such as RFR combined with interpretability 

techniques like SHAP, to provide rapid, cost-

effective, and reliable estimations of critical asphalt 

performance parameters such as MS. This 

approach can function as a valuable tool to 

complement or potentially streamline traditional, 

time-consuming laboratory testing procedures. 

Future research directions arising from this 

work include expanding the database with more 

varied experimental data encompassing different 

material sources and environmental conditions to 

enhance the model's robustness and applicability 

range. Additionally, exploring other advanced ML 

architectures, including deep learning techniques, 

could potentially yield further improvements in 

predictive accuracy. 
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