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Abstract: γ-Fe2O3 nanoparticles (NPs) were synthesized by co-precipitation 

method and a following annealing treatment at 200 C in ambient air for 6 

hours. A mass-type sensor was prepared by coating γ-Fe2O3 NPs on the active 

electrode of quartz crystal microbalance (QCM). The obtained results of the γ-

Fe2O3 NPs based QCM sensor indicate the high response and good 

repeatability toward SO2 gas in the range of 2.5 – 20 ppm at room temperature. 

Moreover, the frequency shift (F) and change in mass of SO2 adsorption per 

unit area (m) of the γ-Fe2O3 NPs coated QCM sensor have a relationship with 

the mass density of γ-Fe2O3 NPs and SO2 concentrations. The artificial neural 

network (ANN) model using Levenberg-Marquardt optimization was used to 

handle the F and m of the γ-Fe2O3 NPs coated QCM sensor. The results of 

the model validation proved to be a reliable way between the experiment and 

prediction values. 
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1. Introduction 

Nowadays, the development of modern 

society has created many sources of pollution 

emission. One of the major global concerns is air 

pollution which puts pressure on governments or 

countries as well as, negative effects on health and 

quality of human daily life [1], [2], [3]. Among them, 

sulfur dioxide (SO2) is always in the top toxic gases 

causing respiratory diseases, bronchoconstriction 

and dyspnea [2], [4], [5]. Therefore, air quality 

guidelines are developed and continuously 

updated by the World Health Organization (WHO). 

The current standard of air quality is 20 μg/m3
 (8 

ppb) and 500 μg/m3 (190 ppb) when people expose 

to SO2 for 24 hours and 10 minutes, respectively 

[6]. The immediate danger to life and health (IDLH) 

values and the short-term exposure limit (TLV-

STEL) of SO2 according to ACGIH are 100 and 5 

ppm, respectively [7]. However, according to P.D. 

Hien’s report on the air pollution level of the urban 

districts of Ha Noi, Viet Nam in 2020, the SO2 

concentrations reached the highest point of 35 

μg/m3 in Hoan Kiem, while Thanh Xuan was 22.5 

(μg/m3) [8]. These pollution levels were higher than 

those recommended by WHO. Accordingly, SO2 

sensors must be seriously considered and 
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developed. These works could contribute to 

environmental pollution monitoring and ensuring 

social guarantee.  

Currently,  there are many types of SO2 

sensors that have been successfully developed 

with different operation principles [9], [10], [11], 

[12]. Among them, the mass-type sensor using 

quartz crystal microbalance (QCM) is highly 

appreciated for its low power consumption, good 

response (nanogram level) and stable operation at 

room temperature [13], [14]. QCM sensors coated 

with iron oxide show excellent detection 

performance to SO2 gas [15]–[17], and γ-Fe2O3 is 

an outstanding sensing material [18], [19]. So far, 

numerous researches have been published for the 

purpose of protease, alcohol and gas classification 

using QCM sensors, which were supported by 

machine learning [20]–[23], [24]. The positive 

results show the considerable application potential 

of this field. However, machine learning is less 

common in SO2 detection studies of QCM sensors 

in general and QCM coated with γ-Fe2O3 in 

particular. Therefore, in this work, the SO2 sensor 

was made from γ-Fe2O3 nanoparticles (NPs) 

coated on the gold electrode of QCM. The basic 

characteristics of sensor were investigated, and 

these experimental data were used for a machine 

learning. The built algorithm was used to predict 

the output signals of QCM sensor (frequency 

shift/F, and the mass change of adsorption SO2 

per unit area of sensing material/m), these 

predictions agree with the experimental results 

after the training process. 

2. Experiment 

2.1. γ-Fe2O3 NPs synthesis 

The chemicals used in this experiment were 

ferric chloride hexahydrate (FeCl3.6H2O, > 98%), 

ferrous chloride tetrahydrate (FeCl2.4H2O, > 98%) 

and sodium hydroxide (NaOH, >98%). These 

chemicals were purchased from Xilong Scientific 

Co., Ltd. (Guang-dong, China). 

In this work, γ-Fe2O3 NPs were synthesized 

through co-precipitation, followed by annealing 

treatment. The detail of synthesis process was 

described in our previous publication [19]. In brief, 

the precursors of FeCl3.6H2O (0,05 mol) and 

FeCl2.4H2O (0,025 mol) were dissolved in 

deionized water (DI). 2M NaOH was then added to 

this mixed solution at 80 C. The precipitate was 

dried and calcined at 200 C in ambient air for 6 

hours to obtain γ-Fe2O3 NPs. The as-prepared γ-

Fe2O3 NPs was dissolved and deposited on the 

electrode of QCM by using spray-coating method 

[17]. γ-Fe2O3 NPs were crushed and dispersed in 

DI with a concentration of 1 mg ml-1. In order to 

fabricate a QCM sensor, 3 ml of dispersed solution 

was used for each experiment at the flow rate of 

0.2 ml min-1. SO2 sensing characteristics of QCM 

sensor were performed with the change in γ-Fe2O3 

NPs layer. The number of sensing material layers, 

γ-Fe2O3 NPs mass density deposited on the 

electrode (m_γ-Fe2O3) and the resonance 

frequency of QCM (F-resonance) corresponding to 

each layer are shown in Table 1.  

Table 1. The parameters of QCM sensor was 

fabricated 

No. Layer F-resonance 

(Hz) 

m_γ-Fe2O3 

(μg.cm-2) 

 uncoated 5001725.8 0 

1 1st 4995656.1 107.24 

2 2nd 4989780.1 211.05 

3 3rd 4983067.6 329.65 

4 4th 4978063.8 418.06 

5 5th 4973373.8 500.92 

6 6th 4967813.1 599.16 

7 7th 4962879.0 686.34 

The gas sensor properties were investigated 

with SO2 gas through a home-made measurement 

system and QCM200 digital controller linked to PC 

by using SRSQCM200 software program [25], [26]. 

XRD pattern of γ-Fe2O3 was recorded in the range 

of 2θ: 20 – 70o using Cu Kα radiation with λ of 

0.1542 nm. The morphology of iron oxide was 

observed by S-4800 Scanning Electron 

Microscopy device (Hitachi). 

2.2. Machine learning for estimation of QCM 

frequency shift and the mass change of 

adsorption SO2 per unit area 

2.2.1. Artificial Neural Network 
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Artificial Neural Network (ANN) is an useful 

algorithm for solving prediction and classification 

problems [27], [28]. In this work, the experimental 

data were used for the development of an ANN 

model. The Levenberg-Marquardt algorithm was 

considered the most suitable for ANN with a 

training dataset [28], [29]. Therefore, ANN based 

on the Levenberg-Marquardt algorithm was used in 

this study to optimize the searching process for 

neurons weights and biases.  

2.2.2. Cross-fold validation 

Cross-validation (CV) is a popular technique 

to evaluate a model more fully and accurately for 

the moderate-sized training in the field of machine 

learning. In k-Fold cross-validation (k-Fold CV), the 

training dataset is randomly split into subsets of 

approximately equal size (k is an integer). The 

machine is trained k times in which one random 

subset is selected as the validation data, the other 

subsets (k-1) are selected as the training data for 

each time. The cross-validation estimate of 

accuracy results from the average evaluation of all 

runs [30]. In this work, k = 10 was chosen to split 

the training dataset due to minor errors and low 

variances through experimentation [31]. On the 

other hand, the test dataset checks the model’s 

response in the final step when dealing with 

unseen data. 

2.2.3. Model evaluation 

In this paper, the coefficient of determination 

(R2) and the root of the mean square error (RMSE) 

are used to evaluate the accuracy of the machine 

learning model in predicting m and F. Precisely, 

R2 shows the square correlation between the 

predicted value and the actual value, RMSE index 

calculates the average of the square of the 

difference between the predicted value and the 

actual value. These values are determined by 

equations (1) [32] and (2) [33]: 

( )
=

= −
m

2

i i

i 1

1
RMSE e m

n
 

 

( ) ( )

( ) ( )

=

= =

− −

=

− −



 

m

i i
2 i 1

m m2 2

i i

i 1 i 1

e e m m

R

e e m m

 

 

Where ei is the estimated value and mi is the 

measured value; e  and m  are the average of 

estimated value and measured value, respectively. 

3. Results and discussion 

3.1. The crystalline structure and 

morphological of as-prepared sample 

 
Fig. 1. (a) XRD, (b) SEM of γ-Fe2O3 NPs and image of QCM sensor coated with γ-Fe2O3 NPs 

Fig. 1 shows the morphological and structural 

characteristics of γ-Fe2O3 material via XRD and 

SEM results. The XRD pattern of the as-prepared 

sample is indicated in Fig. 1a. The strong diffraction 

peaks at about 30.3, 35.4, 43.2, 53.4, 57.1, 

and 62.6 are well-matched with the (220), (311), 
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(400), (422), (511) and (440) lattice planes, 

respectively. In comparison with the standard cards 

(JCPDS No. 19 – 0629 and No. 39.1346), it is 

clearly seen that the as-prepared iron oxide 

material is either Fe3O4 or γ-Fe2O3. However, 

Fe3O4 material was transferred to γ-Fe2O3 at 200 

C due to magnetite oxidation and their similar to 

crystal structures [18], [34], [35], [36]. Thus, the 

crystallite of the synthesized iron oxide in this work 

indicates a crystal structure of γ-Fe2O3. Fig. 1b 

shows SEM image of the as-prepared γ-Fe2O3. The 

morphology of γ-Fe2O3 exhibits a spherical 

appearance. Although the nanoparticles were 

slightly agglomerated, the particles individually 

expose with diameter of 50 nm. In consequence, γ-

Fe2O3 NPs were successfully synthesized by co-

precipitation and following calcining in air. 

Moreover, the mini image of QCM sensor coated 

with γ-Fe2O3 NPs is shown in the insert of the Fig. 

1b. As observed in the mini image, the γ-Fe2O3 NPs 

fully covered the electrode. 

3.2. Experiment results 

The response – recovery curves of QCM 

sensor with the 1st layer of sensing material 

towards SO2 concentration range of 2.5 – 20 ppm 

are described in Fig. 2. The SO2 molecules are 

adsorbed on sensing materials of γ-Fe2O3 NPs via 

hydrogen bonding and like-hydrogen bonds   [18], 

[19].  Fig. 2a shows the change in mass of SO2 

adsorption per unit area for each on/off cycle of the 

target gas. It is clear that the m increases with 

increasing SO2 concentration. Namely, the 

adsorptions of SO2 are 0.004, 0.010, 0.028, 0.047, 

and 0.065 μg.cm-2 at 2.5, 5, 10, 15, and 20 ppm of 

SO2 concentrations, respectively. The relationship 

between m and  the F of QCM can be 

determined by Suaerbrey’s equation [37]. 

ΔF = - Cf.Δm  

Where ΔF is in Hertz (Hz), Δm is in μg cm-2 

and Cf is the sensitivity factor in Hz μg-1 cm2 (Cf = 

56.6 Hz μg-1 cm2 for a 5 MHz AT-cut QCM).  

Based on equation (3), the resonance 

frequency of QCM will reduce when SO2 mass 

adsorbed on the electrode increases. Similarly, the 

change in frequency versus time of the sensor 

towards different SO2 concentrations is shown in 

Fig. 2b. The maximum frequency shifts of the QCM 

sensor towards 2.5, 5, 10, 15 and 20 were about 

0.23, 0.69, 1.68, 2.77, and 3.74 Hz, respectively.  

Thus, the QCM sensor coated with γ-Fe2O3 NPs 

indicated the excellent response to low SO2 

concentrations at room temperature.  

 

Fig. 2. The response – recovery curves of QCM sensor coated with γ-Fe2O3: (a) m, (b) F 

Fig. 3 shows the repeatability of the sensor 

for four cycles at 10 and 15 ppm in real-time. The 

characteristics of frequency shift – time curve are 

similar for all cycles at the same concentration. The 

results indicate that the γ-Fe2O3 NPs sensor has 

good repeatability for SO2 gas. Fig. 4 describes the 
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response signals of sensor at different SO2 

concentrations. The responses not only depend on 

SO2 concentration but also the mass density of γ-

Fe2O3 NPs layer deposited on the electrode of 

QCM. It is obvious that the increase in F is visibly 

proportional to the target gas concentration and 

mass density of the sensing material. 

 

Fig. 3. The repeatability of QCM sensor coated 

with γ-Fe2O3 at (a) 10 and (b) 15 ppm of SO2 

concentration 

 

Fig. 4. The frequency shifts of QCM sensor 

depend on SO2 concentration and m_γ-Fe2O3 

NPs deposited on the QCM electrode 

3.3. Simulation results 

This paper develops an ANN model (with the 

3-4-1 architecture) based on experimental data of 

SO2 gas sensing properties. The sensing material 

layer, m_γ-Fe2O3 and SO2 concentration are input 

variables, whereas m and F are output 

variables. Fig. 5 shows the distribution and the 

correlation of the parameters in this study. In 

addition, Fig. 5 also indicates the correlation of 

input variables, input and output variables, and 

output variables. Based on the value of the 

Pearson correlation coefficient (R), it can be seen 

that the layer and m_γ-Fe2O3 have a considerable 

correlation (R = 1), so they are dependent 

variables; concentration and m_γ-Fe2O3, layer are 

independent variables, these correlations are weak 

(R = 0.01 and 0.02, respectively). Moreover, the 

correlation between input variables (layer, m_γ-

Fe2O3) and output variables (m, F) are moderate 

(R = 0.52) while SO2 concentration has a significant 

correlation with both m and F. Especially, the 

output variables’ (m&F) correlation is 

considerable (R = 1). Based on the analysis of 

simulation results, Con. of SO2 and m_γ-Fe2O3 of 

the data set could increase the accuracy and 

generality of the prediction model. 

The building process of the ANN model is 

carried out in two stages for 110 experiment 

samples: (i) the training phase, 10-Fold CV was 

used during the training phase of the ANN model 

with 70% dataset; (ii) the testing phase, when ANN 

model tool achieves the optimal prediction 

performance, 30% other of the dataset was used to 

evaluate the predictive performance of ANN on 

unseen data. The results of the ANN model 

prediction performance evaluation for output 

variables are shown in Fig. 6. Ten different 

simulations were carried out, denoted from CV-1 to 

CV-10. It is clear that ANN model using Levenberg-

Marquardt optimization has very good predictive 

capability. Namely, CV-2 of F and CV-4 of m 

could be considered the typical model prediction. 

The R2 is the highest while RMSE is the lowest for 

the test dataset.  Thus, the typical prediction results 

of the ANN model are presented via regression 

graphs as shown in Fig. 7.  The regression model 
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shows the correlation between predicted F, m 

according to the ANN model and actual values from 

the experiments for the training dataset (Fig. 7a, c) 

and the testing dataset (Fig. 7b, d), respectively. 

The suggested values from the AI model for the 

training, testing dataset and the values obtained 

from the experiment are very closely distributed on 

the diagonal.  The performance of this ANN model 

is evaluated by the statistical index, such as: 

RMSE and R2.  Additionally, the best F, m 

prediction results of RMSE and R2 are 0.4229, 

0.007836 and 0.9964, 0.9963 for the training 

dataset, and these are 0.5492, 0.008226 and 

0.9933, 0.9942 for the testing dataset, respectively. 

The high values of R2 and low RMSE of the 

proposed ANN model indicated the ability to predict 

accurately and the excellent generalization 

performance in predicting the outputs. 

 
Fig. 5. Histogram and correlation analysis between input and output parameters considered in this study 
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Fig. 6. The results of training and validation of (a b) F and (c, d) m 

 

 

Fig. 7. The estimated values versus true values for (a) training and (b) testing data of F; (c) training and 

(d) testing data of m 

4. Conclusion 

A QCM sensor based on γ-Fe2O3 NPs as a 

sensing material was fabricated. The sensor 

exposed high response, good repeatability towards 
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low concentration of SO2 at room temperature. The 

SO2 gas response of the QCM sensor increases 

with increasing target gas concentration and mass 

density of γ-Fe2O3. Furthermore, the ANN model 

using the Levenberg-Marquardt optimization 

proves the capable and accurate estimation of 

output (the frequency shift and the change in mass 

of adsorption SO2 per unit area) versus input 

variables (m_γ-Fe2O3 and SO2 concentration) of 

QCM sensor. These results bring forward a 

potential application of machine learning in the field 

of QCM sensor in the near future. 
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